Synthesis of ($2 E, 4 E$)-dienals by double formyl-olefination with an arsonium salt and its application in the syntheses of lipoxygenase metabolites of arachidonic acid

Zhi-Hui Peng, Yun-Long Li, Wen-Lian Wu, Cui-Xian Liu and Yu-Lin Wu*
State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China

Abstract

A new facile route to ($2 E, 4 E$)-dienals by a double formyl-olefination with arsonium salts has been developed. By this method and with other arsonium reagents in the key step some lipoxygenase metabolites of arachidonic acid, lipoxin A_{4} and B_{4} and leukotriene B_{4}, have been synthesized.

Polyethylenic aldehyde has gained much attention in recent years because of its importance as useful intermediates in organic synthesis, especially in the syntheses of polyunsaturated natural products such as lipoxygenase metabolites of arachidonic acid, polyene antibiotics, pheromones and other bioactive compounds.

To date several reagents, such as 4-(triphenylphosphoranyl-idene)but-2-enal, ${ }^{1}$ the arsonium salt of crotonaldehyde, ${ }^{2}$ 1-lithio-4-ethoxybutadiene, ${ }^{3}$ or 4 -(diethylphosphono)crotonylcyclohexylimine, ${ }^{4}$ 1-lithio-4-trimethylsiloxybutadiene ${ }^{5}$ and, more recently, δ-alkoxy dienylzirconocene chloride ${ }^{6}$ and γ trimethylsily crotonaldimine, ${ }^{7}$ have been introduced for the conversion of aldehydes into conjugated dienals. However, some of these reagents suffered from being difficult to prepare and/or lack stereoselectivity, whereas others demand rather drastic reaction conditions.

Huang et al. have developed a useful procedure ${ }^{8}$ for the preparation of (α, β) - E-unsaturated aldehydes by the formylolefination of an aldehyde with the easily prepared arsonium salt of bromoacetaldehyde $\left[\mathrm{As}_{(}\left(\mathrm{Ph}_{3}\right) \mathrm{CH}_{2} \mathrm{CHO}\right]^{+} \mathrm{Br}^{-}$. Occasionally, when an excess of the reagent was used, we also detected ($2 E, 4 E$)-dienal in the crude product. Evidently, this compound was formed through one-pot double formyl-olefination of the aldehyde with the arsonium salt, a reaction similar to that with the corresponding formylmethylene(triphenyl)phosphorane, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCHO},{ }^{9}$ but under more drastic reaction conditions and in low yield. Since then we have been systematically exploring the possibility of performing double formyl-olefination in one pot. Herein we report some results of our study.

The results of our study are summarized in Table 1. Use of 2 equiv. of the arsonium salt and inorganic base, with aromatic aldehydes as the substrates, gave the double formyl-olefination product 3 together with, in some cases, the ($2 E, 4 E, 6 E$)-trienal (entries $\mathrm{a}, \mathrm{b}, \mathrm{c}$); the yield of the ($2 E, 4 E$)-dienal was low. Although it is possible to ascribe these results to the low reactivity of the aromatic aldehyde, the results for aliphatic aldehyde were only a little better (entries e, d), with the selectivity still unsatisfactory. However, use of the more active α-alkoxy (acyloxy) aldehydes with portionwise addition of the

Table 1 Results of the one-pot double formyl-olefination of aldehyde

Entry	Substrate 1	Temp. $/{ }^{\circ} \mathrm{C}$	Time/h	Yield (\%) ${ }^{\text {a }}$		
				2	3	4
$\mathrm{a}^{\text {b }}$	$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{CHO}$	25	10	21	47	20
$b^{\text {b.d }}$	PhCHO	40	30	34	35	24
$\mathrm{c}^{\text {b,d }}$	$p-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CHO}$	40	30	51	32	15
$\mathrm{d}^{\text {b }}$	$n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CHO}$	40	17	48	46	
$\mathrm{e}^{\text {b }}$	$n-\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{CHO}$	25	40	39	49	
f^{c}		10	12	21	75	
$\mathrm{g}^{\text {c }}$	$\mathrm{EHO}_{2} \mathrm{C}$	0	10	24	72	
h^{c}		10	12	35	61	
$\mathrm{i}^{\text {c }}$		20	12	23	66	

${ }^{a}$ Isolated yield. ${ }^{b}$ The solvent used was $\mathrm{Et}_{2} \mathrm{O}-\mathrm{THF}$ (7:3). ${ }^{c}$ The solvent was $\mathrm{Et}_{2} \mathrm{O}$ alone. ${ }^{d} \mathrm{KF}-\mathrm{Al}_{2} \mathrm{O}_{3}$ was used as the base instead of $\mathrm{K}_{2} \mathrm{CO}_{3}$.
arsonium salt as well as the base gave increased yields of the ($2 E, 4 E$)-dienal ($61-75 \%$, entries $\mathrm{f}-\mathrm{i}$), with no ($2 E, 4 E, 6 E$)trienals detectable in the crude product. The products from entries $f-i$ are very useful intermediates for the syntheses of natural products. It should be noted that only all- E-isomers could be detected (${ }^{1} \mathrm{H}$ NMR) in the products.

In the present paper we have used our new facile route for construction of conjugated dienal of lipoxygenase metabolites of arachidonic acid. Thus, lipoxin $\mathrm{A}_{4} 5$ and $\mathrm{B}_{4} 6$ and leukotriene $B_{4} 34$ have been synthesized.

Synthesis of lipoxin \mathbf{A}_{4} and $\mathbf{B}_{\mathbf{4}}$

Lipoxins, the lipoxygenase-derived eicosanoids discovered by Samuelsson, ${ }^{10}$ contain an unusual conjugated tetraene system and three asymmetric carbons. LXA $_{4} 5$ and LXB $_{4} 6$ are the major lipoxins formed in vivo. Their all-trans isomers have also been detected, with the stereochemical structures determined by comparison of the biologically produced samples with synthetic ones. ${ }^{11}$ These eicosanoids can be generated by oxidation of arachidonic acid by way of cell-cell interactions or by way of interactions between the 5 - and 15 -lipoxygenases or between the 5 - and 12 -lipoxygenases. This new group of compounds displays a profile of bioactions unique among eicosanoids, ${ }^{12}$ and may play counter-regulatory roles. For example, they have been found to be involved in the stimulation of human neutrophils, inhibition of some 'pro-inflammatory' actions of the leukotrienes, and activation of isolated protein kinase.

Recent results even indicated that LX's formed in vivo may be associated with certain human diseases. Because the small quantities available from biological sources are incompatible with the great needs of further biological investigations, the chemical syntheses of these compounds have attracted much interest. ${ }^{13}$ We intended to apply the formyl-olefination ${ }^{8}$ and our double formyl-olefination of aldehydes using [$\mathrm{As}\left(\mathrm{Ph}_{3}\right)$ $\left.\mathrm{CH}_{2} \mathrm{CHO}\right]^{+} \mathrm{Br}^{-}$for construction of three E-double bonds in these molecules. Our retrosynthesis of these two molecules was based on the results of Depezay ${ }^{13 b}$ (see Scheme 1).

Scheme 1

We have developed a general strategy to prepare these compounds starting from a single chiral pool molecule, the readily available D -glyceraldehyde acetonide $\mathbf{1 f}$. ${ }^{14}$ The syntheses of fully protected LXA_{4} and LXB_{4} as well as their alltrans isomers are depicted in Scheme 2. The reaction of Dglyceraldehyde acetonide 1 f with propynyl bromide and zinc in dimethylformamide (DMF)-ether gave the chiral homopropargylic alcohol 7 with an erythro/threo ratio of $>10: 1 .{ }^{15}$ Treatment of the terminal alkyne 7 with 2 equiv. of BuLi and an excess of ethyl chloroformate afforded 8 and its threo-isomer (separable by flash column chromatography) in 80% total yield. Compound $\mathbf{8}$ was hydrogenated to give the acyclic carbonate 11, which was then converted into the cyclic carbonate 18 by treatment with acid according to known procedures. ${ }^{16}$ The key intermediate, the ($2 E, 4 E$)-dienal 22 , was prepared from 18 by Swern oxidation followed by our double formyl-olefination in one pot, where triethylamine was used as the base instead of potassium carbonate; an overall product yield of $60-66 \%$ was obtained.
The phosphonium salt 25, another segment of LXA_{4}, was also synthesized from the alkyne 7. Alkylation of 7 followed by hydrogenation and chromatography gave the pure erythro compound 9 , silylation of which with $\mathrm{Ph}_{2} \mathrm{BuSiCl}$ followed by acetonide hydrolysis-glycol cleavage with periodic acid ${ }^{17}$ afforded the desired aldehyde 19. Formyl-olefination of 19 with arsonium salt and reduction, bromination and reaction with triphenylphosphine then gave the salt 25 .
Alternatively, protection of compound 9 by ethyl chloroformate in pyridine afforded the acyclic carbonate $13(97 \%)$; this, then, using the same reagents and conditions as described above for the transformation of $\mathbf{1 8}$ into 22, gave, in similar overall yield, the $(2 E, 4 E)$-dienal 26 , the key precursor of LXB_{4}.
The phosphonium salt 29, another precursor of LXB_{4}, was prepared from the alkyne 7. To obtain the pure erythro-isomer of 7, we protected the alcohol with acetic anhydride to give the separable acetyl ester $\mathbf{1 0}$ and its threo-isomer. The alcohol protecting group of $\mathbf{1 0}$ was then changed into a silyl ether, after which an ester group was introduced into the terminal alkyne with BuLi and ethyl chloroformate; and the product hydrogenated to afford compound 17. The phosphonium salt

29 was obtained from 17 using the same procedure described above for the transformation of 19 into 25.
The ylide derived from 25 (BuLi, THF, $-100^{\circ} \mathrm{C}, 5 \mathrm{~min}$) was treated with the dienal 22 and, after HMPA addition and increase of the temperature to $-40^{\circ} \mathrm{C}$, the fully protected lipoxin $\mathrm{A}_{4} 30$ and its all-trans isomer 31 were obtained (61%); these could be easily isolated by flash column chromatography in a ratio of $c a .1 .5: 1$. Similarly, the fully protected lipoxin \mathbf{B}_{4} 32 and its all-trans isomer 33 were obtained ($76 \%, 1: 1$ ratio) by reaction of the ylide derived from 29 (LiHMDS, THF, $-100^{\circ} \mathrm{C}$) with the dienal 26 following the same procedure. Since it has been reported ${ }^{136.18}$ that LXA_{4} and LXB_{4} can be obtained by removal of the protecting groups from compounds 32 and 33 so we have successfully completed the formal syntheses of LXA_{4} and LXB_{4}. The reaction conditions of deprotection have, however, to be optimized.

Synthesis of LTB $_{4}$

Leukotriene $\mathrm{B}_{4}\left(\mathrm{LTB}_{4} ; 34\right)$, also a biologically important arachidonic acid metabolite, has been implicated as a mediator in inflammation and allergic reactions. ${ }^{19}$ Because of its biological importance and low natural abundance, LTB_{4} has been an attractive synthetic target in recent years. ${ }^{20}$ We have already reported a formal convergent synthesis of this compound. ${ }^{21}$ In order to make LTB_{4} more easily accessible for biological studies, we adopted a two-directional synthesis of the C-11-C-20 fragment described by Depezay ${ }^{22}$ to facilitate largescale synthesis. Since the isotopically labelled natural 34 had

proven exceptionally useful in defining the physiological role of many biological mediators, ${ }^{23}$ we designed a modified route to LTB_{4}, in which the 14,15 -triple bond could be partially hydrogenated with hydrogen or tritium in later stages of the synthesis, to provide LTB_{4} or $\left[14,15-{ }^{3} \mathrm{H}_{2}\right]-\mathrm{LTB}_{4}$, respectively.

Compound 35, prepared from D-mannitol, was converted into compound 36 according to known procedures ${ }^{22}$ with some improvements. In the presence of the bulky tert-butyldiphenylsilyl (TBDPS) protecting group, hydrolysis of the acetonide in 36 has proved troublesome ${ }^{22}$ under a wide variety of conditions. Either the procedures had no effect at all [e.g. conc. hydrochloric acid, THF, RT, 6 h; ${ }^{24 \mathrm{a}}$ aq. HClO_{4} (4 equiv.), THF, RT, $15 \mathrm{~h} ;{ }^{24 a} \mathrm{NaIO}_{4}-\mathrm{AcOH}, \mathrm{RT}, 6 \mathrm{~h} ;{ }^{24 \mathrm{~b}} \mathrm{NaBH}_{4}-\mathrm{AcOH}$; DDQwater saturated EtOAc, RT, $7 \mathrm{~h} ;{ }^{24 \mathrm{c}} \mathrm{H}_{5} \mathrm{IO}_{6}, \mathrm{Et}_{2} \mathrm{O} ;{ }^{17} \mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3}{ }^{-}$ $\mathrm{SH}, \mathrm{CoCl}_{2} ;{ }^{24 d} \mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$, PPTS, $\left.\mathrm{MeCN}, 80^{\circ} \mathrm{C}\right]$ or resulted in a complex mixture of products [e.g. $\mathrm{Br}_{2}, \mathrm{Et}_{2} \mathrm{O} ;{ }^{24 a} \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$, $\mathrm{H}_{2} \mathrm{O} ;{ }^{24 a}$ PPTS, $\mathrm{Bu}^{t} \mathrm{OH}, 80^{\circ} \mathrm{C}, 1 \mathrm{~h} ;{ }^{24 e} \mathrm{HO}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OH}$, conc. hydrochloric acid, THF; ${ }^{24 f} \mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{MeCN}$, RT, $2 \mathrm{~h}{ }^{24 d} \mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}, \mathrm{Me}_{3} \mathrm{SiCl}, \mathrm{RT}, 4 \mathrm{~h}{ }^{24 d} \mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$, $\left.\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 80^{\circ} \mathrm{C}, 1 \mathrm{~h} ; \mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}, p-\mathrm{TsOH}\right]$. Noticing the mediative effect of AsPh_{3} on the reactivity of the strong Lewis acid $\mathrm{TiCl}_{4},{ }^{25}$ we finally tried catalytic trans-thioketalization in the presence of the $\mathrm{TiCl}_{4} \cdot \mathrm{AsPh}_{3}$ complex. The result was satisfactory, with glycol deprotection being achieved in 86% yield. The resulting diol was then cleaved by $\mathrm{Pb}(\mathrm{OAc})_{4}$ to yield the aldehyde 38 (Scheme 3). The catalytic trans-thioketalization of $\mathbf{3 6}$ with TiCl_{4} resulted in a complex mixture, from which $\mathbf{3 7}$ was isolated in only 34% yield. There was no reaction when the transthioketalization was performed with $\mathrm{Ti}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{4}$ or $\mathrm{Ti}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{2} \mathrm{Cl}_{2}$ as Lewis acid catalysts.
The key intermediate ($2 E, 4 E$)-dienal 39 was obtained using our double formyl-olefination in 51% yield as a single isomer by reaction of the aldehyde $\mathbf{3 8}$ with 2.5 equiv. of the arsenic ylide

11

18

22

30
12

26

32

$10+$ threo isomer ix

$14 \mathrm{R}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}$
$\mathrm{x} \square 15 \mathrm{R}=\mathrm{TBDPS}, \mathrm{R}^{1}=\mathrm{H}$
$\mathrm{xi} \square 16 \mathrm{R}=$ TBDPS $\mathrm{R}^{1}=\mathrm{C}^{\square}$
$16 \mathrm{R}=$ TBDPS. $\mathrm{R}^{1}=\mathrm{CO}_{2} \mathrm{Et}$

21

33

Scheme 2 Reagents and conditions: $\mathrm{i}, \mathrm{BrCH}_{2} \mathrm{C} \equiv \mathrm{CH}, \mathrm{Zn}, \mathrm{DMF}-\mathrm{Et}_{2} \mathrm{O}\left(80 \%\right.$); ii, $\mathrm{BuLi}, \mathrm{ClCO}_{2} \mathrm{Et}(80 \%)$; iii, $\mathrm{BuLi}, \mathrm{EtBr}(87.5 \%)$; iv, $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}$, $\mathrm{EtOH}(98 \%)$; v, $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(97 \%)$; vi, $\mathrm{H}_{2}, 10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}(95 \%)$; vii, $\mathrm{Ph}_{2} \mathrm{Bu} \mathrm{BS}^{\prime} \mathrm{SiCl}$, imidazole, DMF (86%); viii, ClCO 2 Et , py, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(97 \%)$; ix, $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{MeOH}(100 \%)$; x, $\mathrm{Ph}_{2} \mathrm{Bu} \mathrm{SiCl}$, imidazole, DMF (84%); xi, $\mathrm{BuLi}, \mathrm{ClCO}_{2} \mathrm{Et}(88 \%)$; xii, $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}-\mathrm{H}_{2} \mathrm{O}(1: 1)$, then $p-$ $\mathrm{TsOH}, \mathrm{PhMe}(58-64 \%) ;$ xiii, $\mathrm{H}_{5} \mathrm{IO}_{6}, \mathrm{Et}_{2} \mathrm{O}(95-99 \%)$; xiv, $\mathrm{H}_{2}, 5 \% \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}(88 \%) ; \mathrm{xv},(\mathrm{COCl})_{2}, \mathrm{Me}_{2} \mathrm{SO}, \mathrm{THF}, \mathrm{Et}_{3} \mathrm{~N}-70^{\circ} \mathrm{C}$ to $-35^{\circ} \mathrm{C}$, then $\left[\mathrm{As}\left(\mathrm{Ph}_{3}\right) \mathrm{CH}_{2} \mathrm{CHO}\right]^{+} \mathrm{Br}^{-}$(2 equiv.), $\mathrm{Et}_{3} \mathrm{~N},-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}(60-66 \%)$; xvi, $\left[\mathrm{As}\left(\mathrm{Ph}_{3}\right) \mathrm{CH}_{2} \mathrm{CHO}^{+} \mathrm{Br}^{-}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Et}_{2} \mathrm{O}\right.$-trace water, $-10{ }^{\circ} \mathrm{C}(75-79 \%)$; xvii, $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3}, \mathrm{Pr}^{\mathrm{i} O H}, 0^{\circ} \mathrm{C}(83-98 \%)$; xviii, $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}$, then $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{MeCN}(61-64 \%)$; xix, LiHMDS, THF, $-100{ }^{\circ} \mathrm{C}$, $\mathrm{HMPA}(61 \%)$; xx, BuLi, THF, HMPA, $-100^{\circ} \mathrm{C}(76 \%)$
$\left(\mathrm{Ph}_{3} \mathrm{As}=\mathrm{CHCHO}\right)$ in a one-pot manner, together with the formyl-olefination product (15%) and the triple addition product (22%). Alternatively, compound 39 could also be obtained as a mixture of $(2 E, 4 E)$ - and $(2 E, 4 Z)$ - isomers in a ratio of $9: 1$ in 85% yield based on the consumed starting material by the method of formyl-enyl olefination. ${ }^{2}$ From the mixture pure ($2 E, 4 E$)-39 could be isolated by isomerization followed by chromatography. The dienal 39 was then used in a
series of known reactions, including NaBH_{4} reduction in the presence of CeCl_{3}, bromination of the hydroxy group as well as a salt-forming reaction with PPh_{3}, to give the phosphonium salt 42. Alternatively, the triple bond in compound 40 could be partially hydrogenated with $5 \% \mathrm{Pd}-\mathrm{CaCO}_{3}$ in a toluene solution in 88% yield, and then transformed into corresponding phosphonium salt in the usual way (Scheme 4).
Wittig reaction of the C-1-C-6 segment ${ }^{26.27}$ with the ylide

Scheme 3 Reagents and conditions: i, Hept-1-yne, BuLi, THF-HMPA; ii, $\mathrm{Bu}^{\mathrm{t}} \mathrm{Ph}_{2} \mathrm{SiCl}$, imidazole, DMF (80% in 2 steps); iii, $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$, $\mathrm{TiCl}_{4} \cdot \mathrm{AsPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$ to RT (86%); iv, $\mathrm{Pb}(\mathrm{OAc})_{4}, \mathrm{PhH}, \mathrm{RT}$, (74\%)

Scheme 4 Reagents and conditions: i, $\left[\mathrm{As}^{(}\left(\mathrm{Ph}_{3}\right) \mathrm{CH}_{2} \mathrm{CHO}\right]^{+} \mathrm{Br}^{-}$, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{THF}-\mathrm{Et}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}(51 \%)$; or $\left[\mathrm{As}\left(\mathrm{Ph}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}_{2}=\mathrm{CH}_{2} \mathrm{CHO}\right]^{+}-$ $\mathrm{Br}^{-}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{THF}-\mathrm{Et}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}(85 \%), E / Z=9: 1$; ii, $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} /$ $7 \mathrm{H}_{2} \mathrm{O}, \operatorname{Pri} \mathrm{OH}(89 \%)$; iii, $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; iv, $\mathrm{PPh}_{3}, \mathrm{MeCN}(70 \%$ in 2 steps)
from the salt $\mathbf{4 2}$ in the presence of HMPA afforded $\mathbf{4 3}(84 \%)$ as a 4.2:1 Z / E mixture at the newly formed double bond, which could be separated by careful column chromatography on silica gel (pre-treated with $5 \% \mathrm{Et}_{3} \mathrm{~N}$ in light petroleum) with ethyl acetate-light petroleum $(1: 80)$ as eluent. The cis product is a direct precursor for both the natural and the isotopically labelled LTB_{4}. Thus, partial hydrogenation of $(Z)-43$ with $\mathrm{Pd}-$ $\mathrm{CaCO}_{3}-\mathrm{Pb}$ in a solution of ethyl acetate containing 1% quinoline gave $44(78 \%)$, which was finally subjected to deprotection with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol to afford methyl ester of LTB $_{4} 45$ (Scheme 5). The spectroscopic and physical data of our 45 were in good agreement with reported values. ${ }^{28}$ The current preparative sequence is adaptable to a larger scale, and also allows access to the isotopically labelled compound analogous to the biologically important molecule.
In summary, the preparative method described here is facile, versatile, easy to perform and provides high stereoselectivity. In demonstration of this, the formal syntheses of the lipoxins A_{4} and B_{4} have been achieved utilizing the one-pot, double formyl-olefination of an aldehyde with the arsonium salt $\left[\mathrm{As}\left(\mathrm{Ph}_{3}\right) \mathrm{CH}_{2} \mathrm{CHO}\right]^{+} \mathrm{Br}^{-}$as the key step and D-glyceraldehyde acetonide as the same chiral pool. An improved synthesis of leukotriene B_{4} was also achieved using AsPh_{3}-mediated $\mathrm{TiCl}_{4}{ }^{-}$ catalysed trans-thioketalization and a new double Wittig reaction employing the arsenic ylide $\left(\mathrm{Ph}_{3} \mathrm{As}=\mathrm{CHCHO}\right)$ as the key step for insertion of two trans $\mathrm{C}=\mathrm{C}$ double bonds.

Experimental

Optical rotations, recorded in units of $10^{-1} \mathrm{deg} \mathrm{cm}{ }^{-2} \mathrm{~g}^{-1}$, were measured on a Perkin-Elmer 241 MC Autopol polarimeter.

Scheme 5 Reagents and conditions: $\mathrm{i}, \mathrm{BuLi}$, THF-HMPA, $-80^{\circ} \mathrm{C}(84 \%)$; ii, $\mathrm{Pd}-\mathrm{CaCO}_{3}-\mathrm{Pb}, 1 \%$ quinoline in $\mathrm{EtOAc}(78 \%)$; iii, $\mathrm{Bu}_{4} \mathrm{NF}$, THF; iv, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}(69 \%$ in 2 steps $)$

IR spectra were obtained on a Shimadzu IR-440 spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were taken on a Bruker AMX300 or AMX- 600 spectrometer and J values are given in Hz . Mass spectra were obtained on an HP 5989A spectrometer. High-performance liquid chromatography was carried out on an LKB 2000 liquid chromatograph. Microanalysis was carried out at the Microanalysis Laboratory of this Institute. Flash chromatography was performed on silica gel H (400 mesh).

Typical procedure for the double formyl-olefination of an aldehyde with $\left[\mathrm{As}\left(\mathrm{Ph}_{3}\right) \mathrm{CH}_{2} \mathrm{CHO}\right]^{+} \mathrm{Br}^{-}$and selected data for some ($2 E, 4 E$)-dienal products

To a stirred solution of D-glyceraldehyde acetonide $\mathbf{1 f}(130 \mathrm{mg}$, $1 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ and a trace of water $\left(0.05 \mathrm{~cm}^{3}\right)$ was added $\left[\mathrm{As}\left(\mathrm{Ph}_{3}\right) \mathrm{CH}_{2} \mathrm{CHO}\right]^{+} \mathrm{Br}^{-}(858 \mathrm{mg}, 2 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($276 \mathrm{mg}, 2 \mathrm{mmol}$) in portions. The reaction mixture was stirred at $10^{\circ} \mathrm{C}$ under nitrogen for 12 h after which it was passed through a short pad of silica gel to remove most of the triphenylarsine oxide and the inorganic salt. The silica gel was eluted with ether, and the eluate was concentrated under reduced pressure. Flash chromatography of the residue afforded (4S,2E)-4,5-O-isopropylidene-4,5-dihydroxypent-2enal $2 \mathrm{f}(32 \mathrm{mg}, 21 \%$ yield based on aldehyde) and ($6 S, 2 E, 4 E$)-6,7-dihydroxy-6,7-O-isopropylidene-hepta-2,4-dienal 3f (136 $\mathrm{mg}, 75 \%$); $2[\alpha]_{\mathrm{D}}+28.8$ (c $0.5, \mathrm{CHCl}_{3}$) (Found: M , 182.0900. $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{3}$ requires $M, 182.0943$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1670,1640,1000$ and $980 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 1.40(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.37\left(1 \mathrm{H}, \mathrm{dd}, J_{6.7} 7.6, J_{7.7} 7.9,7-\mathrm{H}\right)$, 3.79 ($\left.1 \mathrm{H}, \mathrm{dd}, J_{6.7} 6.5, J_{7.7} .8 .2,7^{\prime}-\mathrm{H}\right), 4.24\left(1 \mathrm{H}, \mathrm{qd}, J_{4.6} 0.8\right.$, $\left.J_{7.6}=J_{7 \cdot .6}=J_{5.6} 6.5,6-\mathrm{H}\right), 5.64\left(1 \mathrm{H}, \mathrm{dd}, J_{6.5} 6.5, J_{4.5} 15.2\right.$, $5-\mathrm{H}), 5.95\left(1 \mathrm{H}\right.$, dd, $\left.J_{1.2} 7.7, J_{3.2} 15.4,2-\mathrm{H}\right), 6.03\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4}\right.$ $\left.10.7, J_{5.4} 15.2,4-\mathrm{H}\right), 6.39\left(1 \mathrm{H}, \mathrm{dd}, J_{4.3} 10.8, J_{2.3} 15.4,3-\mathrm{H}\right)$ and $9.41\left(1 \mathrm{H}, \mathrm{d}, J_{2.1} 7.7,1-\mathrm{H}\right) ; m / z 182\left(\mathrm{M}^{+}, 1 \%\right), 167(87), 152$ (30), 125 (40), 95 (52), 81 (55), 72 (51) and 43 (100).

Ethyl (5S,6E,7E)-5-benzoyloxy-8-formylocta-6,7-dienoate 3g. This compound had $[\alpha]_{\mathrm{D}}+88.9\left(c 1.10, \mathrm{CHCl}_{3}\right)$ [Found: m / z 208.1075. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{PhCOO}-\mathrm{H}\right)$ requires 208.1099]; $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 1720,1680,1640,1600,1450,1260,1100,980$ and $700 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.95\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right), 1.50-1.67(4 \mathrm{H}$,
$\mathrm{m}, 3,4-\mathrm{H}), 2.08(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.95\left(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{OCH}_{2}\right), 5.49(1$ $\mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.62\left(1 \mathrm{H}, \mathrm{dd}, J_{5.6} 6.1, J_{7.6} 15.3,6-\mathrm{H}\right), 5.75(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{10.9} 7.7, J_{8.9} 15.2,9-\mathrm{H}\right), 6.09\left(1 \mathrm{H}, \mathrm{dd}, J_{8.7} 10.9, J_{6.7} 15.1,7-\mathrm{H}\right)$, 6.31 ($\left.1 \mathrm{H}, \mathrm{dd}, J_{7.8} 10.8, J_{9.8} 15.3,8-\mathrm{H}\right), 7.10(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 8.20$ $(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $9.35\left(1 \mathrm{H}, \mathrm{d}, J_{9.10} 7.7,10-\mathrm{H}\right) ; \mathrm{m} / \mathrm{z} 208(5 \%)$, 179 (3), 143 (3), 105 (100) and 77 (19).
($6 S, 2 E, 4 E$)-6-benzoyloxyundeca-2,4-dienal 3 h. This compound had $[\alpha]_{\mathrm{D}}+115.4\left(c 0.8, \mathrm{CHCl}_{3}\right)$ (Found: C, 75.2; H, 7.7. $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{O}_{3}$ requires C, $75.48 ; \mathrm{H}, 7.75 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1720$, $1680,1640,1260,1000,980$ and $700 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.92(3$ $\left.\mathrm{H}, \mathrm{t}, J 6.9, \mathrm{CH}_{3}\right), 1.20-1.48(6 \mathrm{H}, \mathrm{m}, 8,9,10-\mathrm{H}), 1.50-1.71(2 \mathrm{H}$, $\mathrm{m}, 7-\mathrm{H}), 5.65\left(1 \mathrm{H}, \mathrm{q}, J_{7.6}=J_{5.6} 6.2,6-\mathrm{H}\right), 5.78\left(1 \mathrm{H}, \mathrm{dd}, J_{6.5}\right.$ $\left.6.3, J_{4.5} 15,5-\mathrm{H}\right), 5.88\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2} 7.7, J_{3.2} 15.3,2-\mathrm{H}\right), 6.19(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{3.4} 10.9, J_{5.4} 14.9,4-\mathrm{H}\right), 6.41\left(1 \mathrm{H}, \mathrm{dd}, J_{4.3} 10.9, J_{2.3}\right.$ 15.2, 3-H), 7.18 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 8.26 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 9.41 (1 $\mathrm{H}, \mathrm{d}, J 7.7,1-\mathrm{H}) ; m / z 287\left(\mathrm{M}^{+}+1,0.4 \%\right), 181(0.7), 165(1)$, 105 (100) and 77 (18).
($6 S, 2 E, 4 E$)-6-Benzyloxyhepta-2,4-dienal 3i. This compound had $[\alpha]_{\mathrm{D}}-51.4$ (c 1.05, CHCl_{3}) (Found: C, 77.4; H, 7.4. $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 77.74 ; \mathrm{H}, 7.46 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1680$, 1640, 1100 and $980 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 1.10\left(3 \mathrm{H}, \mathrm{d}, J_{6.7}\right.$ $6.45,7-\mathrm{H}), 3.68(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 4.20\left(1 \mathrm{H}, \mathrm{d}, J_{\mathrm{b}, \mathrm{a}} 12.08\right.$, $\left.\mathrm{OCH}_{2}\right), 4.35\left(1 \mathrm{H}, \mathrm{d}, J_{\text {a.b }} 12.16, \mathrm{OCH}_{2}\right), 5.64\left(1 \mathrm{H}, \mathrm{dd}, J_{6.5}\right.$ $\left.6.83, J_{4.5} 15.43,5-\mathrm{H}\right), 5.88-5.96(2 \mathrm{H}, \mathrm{m}, 2,4-\mathrm{H}), 6.39(1 \mathrm{H}$, dd, $\left.J_{4.3} 10.81, J_{2.3} 15.35,3-\mathrm{H}\right), 7.10-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 9.49$ ($1 \mathrm{H}, \mathrm{d}, J_{2.1} 7.88,1-\mathrm{H}$); $m / z 174$ (0.7%), 125 (2), 109 (3), 91 (100) and 77 (6).

Ethyl (5S,6R)-5-ethoxycarbonyloxy-6,7-O-isopropylidene-6,7-dihydroxyhept-2-ynoate 8

A solution of BuLi in hexane $(40 \mathrm{mmol})$ was added dropwise to a solution of compound $7(3.4 \mathrm{~g}, 20 \mathrm{mmol})$ in dry THF (100 cm^{3}) at $-78^{\circ} \mathrm{C}$. After 1 h , ethyl chloroformate $\left(9.5 \mathrm{~cm}^{3}, 100\right.$ mmol) was added to the mixture and stirring was continued at $-60^{\circ} \mathrm{C}$ for 1 h ; the bath was then allowed to warm to room temperature over 2 h . The reaction was quenched by the addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ to the mixture after which the phases were separated and the aqueous layer was extracted with ether. The organic layer and extracts were combined, washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. The residue was chromatographed to give the erythro-isomer 8 (4.6 $\mathrm{g}, 73 \%) ;[\alpha]_{\mathrm{D}}+37.4\left(c 1.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),\left\{\mathrm{lit},{ }^{16}[\alpha]_{\mathrm{D}}+33(c 1.39\right.$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) (Found: C, 57.0; H, 7.3. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}$ requires C, 57.32; $\mathrm{H}, 7.05) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2200,1750,1705$ and $1250 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.31\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right), 1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.42$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.80\left(1 \mathrm{H}, \mathrm{dd}, J_{5.4} 5.5, J_{4} \cdot 418.0,4-\mathrm{H}\right), 2.88(1 \mathrm{H}$, dd, $J_{5.4} \cdot 4.6, J_{4.4} \cdot 18.4,4^{\prime}-\mathrm{H}$), 3.91 ($1 \mathrm{H}, \mathrm{dd}, J_{6.7} 5.9, J_{7.7} 8.8$, $7-\mathrm{H}), 4.11\left(1 \mathrm{H}, \mathrm{dd}, J_{6.7} .6 .2, J_{7.7} .8 .8,7{ }^{\prime}-\mathrm{H}\right), 4.23(5 \mathrm{H}, \mathrm{m}$, $6-\mathrm{H}+2 \times \mathrm{OCH}_{2}$) and $4.77(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}) ; m / z 299\left(\mathrm{M}^{+}-\right.$ $\mathrm{CH}_{3}, 82 \%$), 271 (41), 229 (47), 165 (54), 121 (68), 101 (100) and 43 (89); and its threo-isomer ($0.45 \mathrm{~g}, 7.1 \%) ;[\alpha]_{\mathrm{D}}+6.2$ (c 1.48 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); $v_{\text {max }}($ neat $) / \mathrm{cm} 2200,1745,1705$ and $1250 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.30\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right), 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.44$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}$), $2.70\left(1 \mathrm{H}, \mathrm{dd}, J_{5.4} 6.5, J_{4: 4} 17.4,4-\mathrm{H}\right), 2.79(1 \mathrm{H}$, dd, $\left.J_{5.4} \cdot 6.5, J_{4.4} \cdot 17.4,4^{\prime}-\mathrm{H}\right), 3.86\left(1 \mathrm{H}, \mathrm{dd}, J_{6.7} 5.6, J_{7.7} 8.7\right.$, $7-\mathrm{H}), 4.08\left(1 \mathrm{H}\right.$, dd, $\left.J_{6.7} \cdot 6.6, J_{7.7} \cdot 8.7,7^{\prime} \cdot \mathrm{H}\right), 4.23(4 \mathrm{H}, \mathrm{m}$, $\left.2 \times \mathrm{OCH}_{2}\right), 4.35(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H})$ and $4.90(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}) ; m / z$ $299\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 34 \%\right.$), 271 (22), 229 (21), 183 (29), 165 (54), 121 (58), 101 (96) and 43 (100).

(2R,3S)-1,2-O-Isopropyldieneoctane-1,2,3-triol 9

BuLi in hexane (60 mmol) was added to a solution of $7(5.1 \mathrm{~g}, 30$ $\mathrm{mmol})$ in dry THF $\left(150 \mathrm{~cm}^{3}\right)$ at $-60^{\circ} \mathrm{C}$ under N_{2} followed, after 0.5 h , by a solution of ethyl bromide ($2.61 \mathrm{~cm}^{3}, 35 \mathrm{mmol}$) in HMPA ($15 \mathrm{~cm}^{3}$). Stirring was continued for 0.5 h at the same temperature and then at room temperature overnight. The reaction was quenched by the addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ to the mixture which was then extracted with ether. The extract was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated and the residue chromatographed to give pure ($2 R$)-1,2-
isopropylideneoct-5-yne-1,2,3-triol $(5.2 \mathrm{~g}, 88 \%)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 3400 and $1060 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.15(3 \mathrm{H}, \mathrm{t}, J 7,8-\mathrm{H}), 1.36$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.18(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 2.50(2 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 3.70-3.80(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}+1-\mathrm{H})$ and 3.93-4.10(2 H, m, $\left.2-\mathrm{H}+1^{\prime}-\mathrm{H}\right) ; m / z 199\left(\mathrm{M}^{+}+1,10 \%\right), 183$ (32), 123 (68), 101 (100), 95 (46) and 43 (78). This compound ($5.5 \mathrm{~g}, 27.8 \mathrm{mmol}$) was hydrogenated in ethanol ($40 \mathrm{~cm}^{3}$) under atmospheric pressure using $10 \% \mathrm{Pd}-\mathrm{C}(200 \mathrm{mg})$ as catalyst. After uptake of the theoretical amount of hydrogen, the mixture was filtered and the filtrate was evaporated under reduced pressure. Chromatography of the residue afforded the title compound 9 $(4.67 \mathrm{~g}, 85 \%) ;[\alpha]_{\mathrm{D}}+13.1\left(c 1.7, \mathrm{CHCl}_{3}\right)$ [Found: $m / z 187.1329$. $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{3}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$ requires 187.1334$] ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 3350 and $1050 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right), 1.38$ (3 $\left.\mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.27-1.57(8 \mathrm{H}, \mathrm{m}, 4,5,6,7-\mathrm{H})$, $2.15(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 3.58(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.74(1 \mathrm{H}, \mathrm{m}, 1-\mathrm{H})$ and $3.90-4.05\left(2 \mathrm{H}, \mathrm{m}, 1^{-}-\mathrm{H}+2-\mathrm{H}\right) ; m / z 203\left(\mathrm{M}^{+}, 2 \%\right), 187(39)$, 127 (15), 101 (100) and 43 (58); and its threo-isomer (0.7 g , $13 \%) ;[\alpha]_{\mathrm{D}}+18.4\left(c 1.1, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3400$ and $1050 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.90\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right), 1.38(3 \mathrm{H}, \mathrm{s}$, CH_{3}), $1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.27-1.57(8 \mathrm{H}, \mathrm{m}, 4,5,6,7-\mathrm{H}), 2.20$ ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), $3.48(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 3.72(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H})$ and 3.98 ($2 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}+2-\mathrm{H}$); $m / z 203\left(\mathrm{M}^{+}, 9 \%\right), 187$ (25), 145 (2), 127 (29), 101 (100) and 43 (35).

(2R,3S)-3-tert-Butyldiphenylsilyloxy-1,2-O-isopropylidene-octane-1,2,3-triol 12

tert-Butylchlorodiphenylsilane $\left(3.94 \mathrm{~cm}^{3}, 15 \mathrm{mmol}\right)$ and imidazole ($2.19 \mathrm{~g}, 32 \mathrm{mmol}$) were added successively to a solution of compound $9(1.62 \mathrm{~g}, 8 \mathrm{mmol})$ in anhydrous DMF ($50 \mathrm{~cm}^{3}$) under N_{2}. The mixture was stirred at room temperature for 50 h , and then partitioned between $\mathrm{Et}_{2} \mathrm{O}(200$ cm^{3}) and water ($20 \mathrm{~cm}^{3}$). The organic layer was separated and washed with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Flash chromatography of the residue afforded the pure compound $12(3.01 \mathrm{~g}$, $85.5 \%) ;[\alpha]_{\mathrm{D}}+21.6\left(c 0.65, \mathrm{CHCl}_{3}\right)\left\{\mathrm{lit},{ }^{16}[\alpha]_{\mathrm{D}}+12\right.$ (c 1.14 , $\left.\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\} ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1450,1420,1100,1060,810,730$ and $690 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.78(3 \mathrm{H}, \mathrm{t}, J 7.0,8-\mathrm{H}), 1.0-1.50(23$ $\left.\mathrm{H}, \mathrm{m}, 4-7-\mathrm{H}+\mathrm{Bu}^{t}+2 \times \mathrm{CH}_{3}\right), 3.74-3.82(2 \mathrm{H}, \mathrm{m}, 1-\mathrm{H}+3-$ $\mathrm{H}), 3.95\left(1 \mathrm{H}, \mathrm{dd}, J_{2.1} \cdot 6.3, J_{1.1} .7 .8,1^{\prime}-\mathrm{H}\right), 4.06\left(1 \mathrm{H}, \mathrm{q}, J_{1.2}=\right.$ $\left.J_{1 \cdot 2}=J_{3.2} 6.3,2-\mathrm{H}\right), 7.35-7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.67-7.72$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

(2R,3S)-3-Acetoxy-1,2-O-isopropylidenehex-5-yne-1,2,3-triol

 10$\mathrm{Et}_{3} \mathrm{~N}\left(20.9 \mathrm{~cm}^{3}, 0.15 \mathrm{~mol}\right)$ was added to a solution of the alkyne $7(17 \mathrm{~g}, 0.1 \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(300 \mathrm{~cm}^{3}\right)$. After being stirred at $0^{\circ} \mathrm{C}$ for 10 min , the mixture was treated with DMAP $(0.1 \mathrm{~g})$ and acetyl anhydride ($14.1 \mathrm{~cm}^{3}, 0.15 \mathrm{~mol}$) and stirring continued at room temperature for 1.5 h . The mixture was then washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Flash chromatography of the residue afforded the acetyl ester $10(19 \mathrm{~g}, 89.6 \%) ;[\alpha]_{\mathrm{D}}+35.1\left(c 1.05, \mathrm{CHCl}_{3}\right)$ [Found: m / z 197.0803. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$ requires 197.0814]; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3290,1740,1220$ and $840 ; \delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.01(1 \mathrm{H}$, $\left.\mathrm{t}, J_{4.6} 3,6-\mathrm{H}\right), 2.58\left(1 \mathrm{H}, \mathrm{ddd}, J_{6.4} 2.7, J_{3.4} 5.8, J_{4.4} 17.4,4-\mathrm{H}\right.$), $2.66\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6.4} \cdot 2.6, J_{3.4} \cdot 4.8, J_{4.4} \cdot 17.3,4^{\prime}-\mathrm{H}\right), 3.86(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{2.1} 5.5, J_{1.1} 8.6,1-\mathrm{H}\right), 4.08\left(1 \mathrm{H}, \mathrm{dd}, J_{2.1} \cdot 6.4, J_{1.1} \cdot 8.6,1^{\prime}-\mathrm{H}\right)$, $4.30\left(1 \mathrm{H}, \mathrm{q}, J_{1.2}=J_{1 \cdot 2}=J_{3.2} 6.4,2-\mathrm{H}\right)$ and $4.95(1 \mathrm{H}, \mathrm{q}$, $\left.J_{4.3}=J_{4: 3}=J_{2.3} 5.1,3-\mathrm{H}\right) ; m / z 197\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 13 \%\right), 115$ (5), 101 (18), 95 (10) and 43 (100); and its threo isomer (1.47 g , $7 \%) ;[\alpha]_{\mathrm{D}}+0.48\left(c \quad 1.15, \mathrm{CHCl}_{3}\right)$ [Found: m / z 197.0809, $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{O}_{4}\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$ requires 197.0814]; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $3290,1740,1220$ and $840 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.36(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.01\left(1 \mathrm{H}, \mathrm{t}, J_{4.6} 3,6-\mathrm{H}\right), 2.50(1 \mathrm{H}$, ddd, $J_{6.4} 2.7, J_{3.4} 6.5, J_{4} ; 416.9,4-\mathrm{H}$), 2.61 (1 H , ddd, $J_{6.4} \cdot 2.7$, $\left.J_{3.4} \cdot 6.4, J_{4.4} \cdot 16.9,4^{\prime}-\mathrm{H}\right), 3.79\left(1 \mathrm{H}, \mathrm{dd}, J_{2.1} 5.9, J_{1 \cdot 1} 8.6,1 \cdot \mathrm{H}\right)$, $4.06\left(1 \mathrm{H}, \mathrm{dd}, J_{2.1} .6 .8, J_{1.1} \cdot 8.7,1^{\prime}-\mathrm{H}\right), 4.37\left(1 \mathrm{H}, \mathrm{q}, J_{1.2}=\right.$
$\left.J_{1 \cdot 2}=J_{3.2} 6.1,2-\mathrm{H}\right)$ and $5.03\left(1 \mathrm{H}, \mathrm{q}, J_{4.3}=J_{4 \cdot 3}=J_{2.3} 6.4\right.$, 3-H); $m / z 197\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 30 \%\right.$), 169 (2), 115 (8), 101 (31), 95 (20) and 43 (100).

(5S,6R)-5-Ethoxycarbonyloxy-6,7-O-isopropylidene-5,6,7trihydroxyheptanoate 11

Compound 8 ($942 \mathrm{mg}, 3 \mathrm{mmol}$) was hydrogenated under atmospheric pressure using $10 \% \mathrm{Pd}-\mathrm{C}(80 \mathrm{mg})$ as catalyst and anhydrous ethanol $\left(20 \mathrm{~cm}^{3}\right)$ as solvent. After the theoretical amount of hydrogen had been taken up, the reaction mixture was filtered and the filtrate was evaporated under reduced pressure to give the product $11(910 \mathrm{mg}, 95 \%$), which was used in the next step without further purification; $[\alpha]_{\mathrm{D}}-5.8$ (c 0.64, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $\left\{\mathrm{lit},{ }^{16}[\alpha]_{\mathrm{D}}-4\right.$ (c 1.1, $\left.\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\} ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1715 and $1250 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.27-1.37(6 \mathrm{H}, \mathrm{m}$, $2 \times \mathrm{CH}_{3}$), $1.34\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.62-1.85$ ($4 \mathrm{H}, \mathrm{m}, 3,4-\mathrm{H}$), $2.35(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.85(1 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.05$ $\left(1 \mathrm{H}, \mathrm{m}, 7^{\prime}-\mathrm{H}\right), 4.10-4.25\left(5 \mathrm{H}, 6-\mathrm{H}+2 \times \mathrm{OCH}_{2}\right)$ and 4.85 ($1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}$).

(2R,3S)-1,2-O-Isopropylidenehex-5-yne-1,2,3-triol 14

Potassium carbonate (300 mg) was added to a solution of the acetyl ester $10(9.4 \mathrm{~g}, 43.5 \mathrm{mmol})$ in anhydrous methanol (60 cm^{3}) and the mixture was stirred at room temperature for 1 h . After the methanol had been evaporated, the residue was diluted with $\mathrm{Et}_{2} \mathrm{O}\left(200 \mathrm{~cm}^{3}\right)$, washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Compound 14 (pure erythro isomer of 7), was obtained in quantitative yield (7.39 g); $[\alpha]_{\mathrm{D}}+6.4$ (c 1.4, CHCl_{3}) [Found: m / z 155.0736. $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{3}$ requires ($\mathrm{M}-\mathrm{CH}_{3}$), 157.0708]; $v_{\max }($ neat $) / \mathrm{cm}^{-1} 3350,3200,1050$ and $840 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.42\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.08\left(1 \mathrm{H}, \mathrm{t}, J_{4.6} 2.6,6-\mathrm{H}\right)$, $2.29(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 2.46\left(1 \mathrm{H}\right.$, ddd, $J_{6.4} 2.5, J_{3.4} 5.6, J_{4: 4} 17.2$, $4-\mathrm{H}), 2.54\left(1 \mathrm{H}\right.$, ddd, $\left.J_{6.4} \cdot 2.5, J_{3.4} \cdot 5.6, J_{4.4} \cdot 17.2,4^{\prime}-\mathrm{H}\right), 3.78(1$ $\mathrm{H}, \mathrm{m}, 1-\mathrm{H}), 4.01\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right)$ and $4.05-4.15$ ($2 \mathrm{H}, \mathrm{m}, 2,3-\mathrm{H}$); $m / z 155\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 38 \%\right), 101$ (77), 95 (44), 81 (18), 73 (23), 59 (35) and 43 (100).

(2R,3S)-3-tert-Butyldiphenylsilyloxy-1,2-O-isopropylidenehex-5-yne-1,2,3-triol 15

tert-Butylchlorodiphenylsilane ($2.41 \mathrm{~cm}^{3}, 9.18 \mathrm{mmol}$) and imidazole ($1.93 \mathrm{~g}, 28.2 \mathrm{mmol}$) were added successively to a solution of compound $14(1.2 \mathrm{~g}, 7.06 \mathrm{mmol})$ in anhydrous DMF $\left(5 \mathrm{~cm}^{3}\right)$. The mixture was stirred at room temperature for 30 h , and then partitioned between $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3}\right)$ and water $\left(10 \mathrm{~cm}^{3}\right)$. The organic layer was separated and washed with saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated under reduced pressure. Flash chromatography of the residue afforded the pure title compound $(2.37 \mathrm{~g}, 83.6 \%)$; $[\alpha]_{\mathrm{D}}+37.6\left(c 1.2, \mathrm{CHCl}_{3}\right)$ [Found: m / z 393.1871. $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{3} \mathrm{Si}$ requires $\left.\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right), 393.1885\right] ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3200,1420$, 1100,730 and $690 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.08\left(9 \mathrm{H}, \mathrm{s}, \mathrm{But}^{t}\right), 1.29$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.98\left(1 \mathrm{H}, \mathrm{t}, J_{4.6} 2.6,6-\mathrm{H}\right), 2.23$ (1 H , ddd, $J_{6.4} 2.8, J_{3.4} 5.4, J_{4: 4} 17.4,4-\mathrm{H}$), $2.36\left(1 \mathrm{H}\right.$, ddd, $J_{6.4}$. $\left.2.8, J_{3.4} \cdot 3.7, J_{4.4} \cdot 16.9,4^{\prime}-\mathrm{H}\right), 3.78-3.85(2 \mathrm{H}, \mathrm{m}, 1,3-\mathrm{H}), 4.02$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{2.1} .6 .5, J_{1.1} .8 .2,1^{\prime}-\mathrm{H}\right), 4.29\left(1 \mathrm{H}, \mathrm{q}, J_{1.2}=\right.$ $\left.J_{1 \cdot 2}=J_{3.2} 6.5,2-\mathrm{H}\right), 7.38-7.44(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.69-7.75$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $m / z 393\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 5 \%\right), 351\left(\mathrm{M}^{+}-\mathrm{Bu}^{\dagger}, 3\right)$, 293 (47), 249 (70), 215 (100), 199 (58), 183 (54), 105 (32) and 43 (21).

Ethyl (5S,6R)-5-tert-Butyldiphenylsilyloxy-6,7-O-isopropyl-idenehept-2-ynoate 16

BuLi in hexane (6 mmol) was added to a stirred solution of compound $15(2.2 \mathrm{~g}, 5 \mathrm{mmol})$ in THF $\left(40 \mathrm{~cm}^{3}\right)$ at $-70^{\circ} \mathrm{C}$. After being stirred for 2 h at the same temperature, the mixture was treated with ethyl chloroformate $\left(0.78 \mathrm{~cm}^{3}, 8 \mathrm{mmol}\right)$ at $-70^{\circ} \mathrm{C}$. After an additional 3 h at $-70^{\circ} \mathrm{C}$, the mixture was allowed to warm to room temperature when it was treated with saturated brine to quench the reaction. The phases were separated and the
aqueous phase was back-extracted with ether. The combined organic phases were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Flash chromatography of the residue afforded $16(2.1 \mathrm{~g}, 88.2 \%) ;[\alpha]_{\mathrm{D}}$ +73.3 (c 1.2, CHCl_{3}) (Found: C, 71.30; H, 7.89. $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{O}_{5} \mathrm{Si}$ requires C, $69.97 ; \mathrm{H}, 7.58$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2170,1700,1580$, $1420,1240,730$ and $690 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.08\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\dagger}\right)$, $1.27-1.33\left(9 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{3}\right), 2.39\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} 4.2, J_{4: 4} 17.5\right.$, $4-\mathrm{H}), 2.52\left(1 \mathrm{H}, \mathrm{dd}, J_{3.4} \cdot 4.2, J_{4.4} \cdot 17.5,4^{\prime}-\mathrm{H}\right), 3.75-3.82(2 \mathrm{H}$, $\mathrm{m}, 5,7-\mathrm{H}), 4.01$ ($1 \mathrm{H}, \mathrm{dd}, J_{6.7} \cdot 6.6, J_{7.7} \cdot 8.3,7^{\prime}-\mathrm{H}$), 4.17-4.25 (3 $\mathrm{H}, \mathrm{m}, 6-\mathrm{H}+\mathrm{OEt}), 7.36-7.50(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.69-7.74 (4 $\mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z 465\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 4 \%\right), 423\left(\mathrm{M}^{+}-\mathrm{Bu}^{+}, 2\right), 365$ (30), 319 (350), 291 (47), 199 (100), 183 (65), 135 (55) and 43 (18).

Ethyl (5S,6R)-5-tert-Butyldiphenylsilyloxy-6,7-O-isopropylideneheptanoate 17

Ethyl ($5 S, 6 R$)-5-tert-Butyldiphenylsilyloxy-6,7-O-isopropyl-idenehept-2-ynoate ($1.9 \mathrm{~g}, 4 \mathrm{mmol}$) was hydrogenated under atmospheric pressure using $5 \% \mathrm{Pd}-\mathrm{C}(200 \mathrm{mg})$ as catalyst and anhydrous ethanol $\left(20 \mathrm{~cm}^{3}\right)$ as solvent. After the theoretical amount of hydrogen had been taken up, the reaction mixture was filtered and the filtrate was evaporated under reduced pressure. Chromatography of the residue afforded $17(1.7 \mathrm{~g}$, 88.5%); $[\alpha]_{\mathrm{D}}+19.6$ (c 0.75, CHCl_{3}) (Found: $m / z 469.2412$, $\mathrm{C}_{2}{ }_{7} \mathrm{H}_{3}{ }_{7} \mathrm{O}_{5} \mathrm{Si}$ requires $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right) 469.2410$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1720,1420,1100,720$ and $690 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.05(9 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{Bu}^{t}\right), 1.22(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{OEt}), 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.30(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.39-1.70(4 \mathrm{H}, \mathrm{m}, 3,4-\mathrm{H}), 2.00-2.07(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.69$ $\left(1 \mathrm{H}, \mathrm{t}, J_{6.7}=J_{7.7} 7.2,7-\mathrm{H}\right), 3.76(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.94(1 \mathrm{H}, \mathrm{t}$, $\left.J_{6.7}=J_{7.7} \cdot 7.5,7^{\prime}-\mathrm{H}\right), 4.08(3 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}+\mathrm{OEt}), 7.36-7.43(6$ $\mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.6-7.70 (4 H, m, ArH); m/z $469\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, 2%), 369 (42), 323 (30), 281 (32), 263 (33), 199 (100), 183 (57) and 135 (59).

($6 R, 7 S, 2 E, 4 E$)-6,7-dihydroxy-6,7-O-oxomethylenedodeca-2,4dienal 22

To a solution of oxalyl chloride ($0.228 \mathrm{~cm}^{3}, 2.6 \mathrm{mmol}$) in THF $\left(10 \mathrm{~cm}^{3}\right)$ was slowly added, over 2 min , DMSO $\left(0.370 \mathrm{~cm}^{3}, 5.2\right.$ $\mathrm{mmol})$ in THF $\left(4 \mathrm{~cm}^{3}\right)$ at $-70^{\circ} \mathrm{C}$. After being stirred at $-35^{\circ} \mathrm{C}$ for 1 h , the mixture was re-cooled to $-70^{\circ} \mathrm{C}$ before the alcohol carbonate 18 ($376 \mathrm{mg}, 2 \mathrm{mmol}$) in THF ($4 \mathrm{~cm}^{3}$) was added over 2 min . After 1 h at $-35^{\circ} \mathrm{C}$, the mixture was treated with $\mathrm{Et}_{3} \mathrm{~N}\left(1.4 \mathrm{~cm}^{3}, 10 \mathrm{mmol}\right)$ at $-70^{\circ} \mathrm{C}$ and its temperature slowly raised to $-10^{\circ} \mathrm{C}$ over 1 h . The arsonium salt $(1.72 \mathrm{~g}, 4$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(0.560 \mathrm{~cm}^{3}, 4 \mathrm{mmol}\right)$ were then added at $0^{\circ} \mathrm{C}$ in portions to the mixture after which it was stirred at $0^{\circ} \mathrm{C}$ for 8 h . The mixture was then diluted with ether, filtered through silica gel to remove triphenylarsine oxide and triethylammonium halides and concentrated under reduced pressure. Flash chromatography of the residue afforded the dienal $22(310 \mathrm{mg}$, $65 \%) ;[\alpha]_{\mathrm{D}}+7.3\left(c 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),\left\{\right.$ lit, ${ }^{16}[\alpha]_{\mathrm{D}}+12(c 1.4$, $\left.\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\} ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1790,1710,1680,1640,1160$ and $980 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.01\left(3 \mathrm{H}, \mathrm{t}, \mathrm{CH}_{3}\right), 1.30-1.60(4 \mathrm{H}, \mathrm{m}$, $3,4-\mathrm{H}), 2.01(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.83(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.98(2 \mathrm{H}, \mathrm{q}, J$ $\left.7.1, \mathrm{OCH}_{2}\right), 4.20\left(1 \mathrm{H}, \mathrm{t}, J_{5.6}=J_{7.6} 7.4,6-\mathrm{H}\right), 5.28(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{11.10} 7.2, J_{9.10} 15.3,10-\mathrm{H}\right), 5.82-5.91(2 \mathrm{H}, \mathrm{m}, 7,8-\mathrm{H}), 6.27(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{8.9} 10.8, J_{10.9} 15.5,9-\mathrm{H}\right)$ and $9.36\left(1 \mathrm{H}, \mathrm{d}, J_{10.11} 7.6,11-\right.$ H); $m / z 283\left(\mathrm{M}^{+}-1\right), 193(14 \%), 149(45), 99(91), 81$ (100) and 55 (94).
The dienal 26 was obtained in a similar way $(60 \%) ;[\alpha]_{\mathrm{D}}$ $+7.7\left(c 0.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),\left\{\right.$ lit, $\left.{ }^{16}[\alpha]_{\mathrm{D}}+10\left(c 1.92, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\}$; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1790,1680,1640$ and $980 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ $0.88(3 \mathrm{H}, \mathrm{t}, J 7,12-\mathrm{H}), 1.0-1.5(8 \mathrm{H}, \mathrm{m}, 8,9,10,11-\mathrm{H}), 3.95(1$ $\mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.34\left(1 \mathrm{H}, \mathrm{t}, J_{5.6}=J_{7.6} 7.5,6-\mathrm{H}\right), 5.36\left(1 \mathrm{H}, \mathrm{dd}, J_{1.2}\right.$ $\left.7.2, J_{3.2} 15.2,2-\mathrm{H}\right), 5.85-5.98(2 \mathrm{H}, \mathrm{m}, 4,5-\mathrm{H}), 6.32\left(1 \mathrm{H}, \mathrm{dd}, J_{4.3}\right.$ $\left.10.8, J_{2.3} 15.3,3-\mathrm{H}\right)$ and $9.38\left(1 \mathrm{H}, \mathrm{d}, J_{2.1} 7.6,1-\mathrm{H}\right) ; m / z 239$ $\left(\mathrm{M}^{+}-1,23 \%\right), 213$ (4), 195 (7), 81 (75) and 66 (100).

(2S)-tert-Butyldiphenylsilyloxyheptaldehyde 19

The acetol 12 ($2.9 \mathrm{~g}, 6.6 \mathrm{mmol}$) was added to a well-stirred suspension of periodic acid $(3.0 \mathrm{~g}, 13.2 \mathrm{mmol})$ in dry ether (50
cm^{3}) under a nitrogen atmosphere, at room temperature. After being stirred for 10 h , the reaction mixture was filtered and the filtrate was concentrated under reduced pressure. Flash chromatography of the residue gave the aldehyde $19(2.4 \mathrm{~g}$, $98.8 \%) ;[\alpha]_{\mathrm{D}}+2.7$ (c $\left.1.05, \mathrm{CHCl}_{3}\right)\left\{\right.$ lit, ${ }^{16}[\alpha]_{\mathrm{D}}-1$ (c 1.25 , $\left.\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\} ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1720,1450,1420,1100,810,730$ and $690 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.84(3 \mathrm{H}, \mathrm{t}, J 6.8,7-\mathrm{H}$), 1.00-1.40 (15 $\left.\mathrm{H}, \mathrm{m}, 4-7-\mathrm{H}+\mathrm{Bu}^{\mathrm{t}}\right), 1.52-1.70(2 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 4.03\left(1 \mathrm{H}, \mathrm{td}, J_{3.2}\right.$ $\left.5.9, J_{1.2} 1.5,2-\mathrm{H}\right), 7.34-7.46(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.62-7.69(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $9.59\left(1 \mathrm{H}, \mathrm{d}, J_{2.1} 1.5,1-\mathrm{H}\right)$.
The aldehyde 21 was prepared in a similar way $(95 \%) ;[\alpha]_{\mathrm{D}}$ -3.5 (c 1.4, $\left.\mathrm{CHCl}_{3}\right)\left\{\right.$ lit., $\left.{ }^{16}[\alpha]_{\mathrm{D}}+0.6\left(c \quad 1.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\} ; \dagger$ $v_{\max }($ neat $) / \mathrm{cm}^{-1} 1720,1450,1100,730$ and $690 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 1.12\left(9 \mathrm{H}, \mathrm{t}, \mathrm{Bu}^{t}\right), 1.23(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OEt}), 1.58-1.78(4 \mathrm{H}$, $\mathrm{m}, 3,4-\mathrm{H}), 2.16-2.24(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.01-4.19(3 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}+$ OEt), 7.32-7.49 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.60-7.73 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 9.58 ($1 \mathrm{H}, \mathrm{s}, 6-\mathrm{H}$).

(4S,2E)-4-tert-Butyldiphenylsiloxynon-2-enal 23

To a stirred solution of the aldehyde $19(1.84 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}$ $\left(30 \mathrm{~cm}^{3}\right)$ and a trace of water $\left(0.300 \mathrm{~cm}^{3}\right)$ at $-10^{\circ} \mathrm{C}$ were added, in turn, portions of the arsonium salt ($2.15 \mathrm{~g}, 5 \mathrm{mmol}$) and potassium carbonate ($0.67 \mathrm{~g}, 5 \mathrm{mmol}$). After being stirred for 7 h under nitrogen, the mixture was passed through a short pad of silica gel and concentrated. Flash chromatography of the residue gave compound 23 ($1.55 \mathrm{~g}, 79 \%$); $[\alpha]_{\mathrm{D}}-18.5$ (c 1.4, $\left.\mathrm{CHCl}_{3}\right)\left\{\right.$ lit., $\left.{ }^{13 b}[\alpha]_{\mathrm{D}}-18\left(c \quad 0.5, \mathrm{CHCl}_{3}\right)\right\}, \nu_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ $1680,1450,1420,1100,960,810,730$ and $690 ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.75(3 \mathrm{H}, \mathrm{t}, J 7.1,9-\mathrm{H}), 1.0-1.25(15 \mathrm{H}, \mathrm{m}, 6-8-\mathrm{H}+$ $\left.\mathrm{Bu}^{t}\right), 1.40-1.50(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.38\left(1 \mathrm{H}, \mathrm{q}, J_{5.4}=J_{3.4} 5.3\right.$, $4-\mathrm{H}), 6.06\left(1 \mathrm{H}\right.$, ddd, $\left.J_{4.2} 0.9, J_{1.2} 7.9, J_{3.2} 15.5,2-\mathrm{H}\right), 6.61(1 \mathrm{H}$, dd, $\left.J_{4.3} 5.3, J_{2.3} 15.7,3-\mathrm{H}\right), 7.24-7.39(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.51-7.60$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 9.38 ($1 \mathrm{H}, \mathrm{d}, J_{2.1} 8.0,1-\mathrm{H}$).

Ethyl (5S,6E)-5-tert-Butyldiphenylsilyloxy-8-formyloct-6enoate 27

This compound was prepared in a similar way $(75.3 \%) ;[\alpha]_{\mathrm{D}}$ -13.2 (c 0.5, CHCl_{3}) [Found: $m / z 381.1485, \mathrm{C}_{22} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{Si}$ requires $\left.\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right), 381.1522\right] ; v_{\max }($ neat $) / \mathrm{cm}^{-1} 1720,1680$, $1420,1100,730$ and $690 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 1.11\left(9 \mathrm{H}, \mathrm{t}, \mathrm{Bu}^{t}\right)$, $1.25(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{OEt}), 1.50-1.75(4 \mathrm{H}, \mathrm{m}, 3,4-\mathrm{H}), 2.19(2 \mathrm{H}, \mathrm{t}$, $\left.J_{3.2} 6.9,2-\mathrm{H}\right), 4.11(2 \mathrm{H}, \mathrm{q}, J 7.2, \mathrm{OEt}), 4.50(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 6.17$ (1 H, ddd, $J_{5.7} 1.5, J_{8.7} 7.9, J_{6.7} 15.7,7-\mathrm{H}$), $6.69\left(1 \mathrm{H}, \mathrm{dd}, J_{5.6}\right.$ $\left.5.0, J_{7.6} 15.5,6-\mathrm{H}\right)$ and $9.47\left(1 \mathrm{H}, \mathrm{d}, J_{7.8} 7.8,8-\mathrm{H}\right) ; m / z 393$ (7\%), 381 (100), 335 (12), 227 (24), 199 (93), 183 (39), 139 (44), 77 (18) and 55 (20).

Protected LXA 30 and its (8E)-isomer 31

To a solution of the phosphonium salt $25(133 \mathrm{mg}, 0.185 \mathrm{mmol})$ in dry THF ($4 \mathrm{~cm}^{3}$) at $-100^{\circ} \mathrm{C}$ was added an LHMDS solution in THF ($\left.0.5 \mathrm{~mol} \mathrm{dm}^{-3} ; 0.336 \mathrm{~cm}^{3}, 0.168 \mathrm{mmol}\right)$. After 5 min , the aldehyde $19(40 \mathrm{mg}, 168 \mathrm{mmol})$ in THF ($1.5 \mathrm{~cm}^{3}$) and HMPA $\left(0.270 \mathrm{~cm}^{3}\right)$ were added. The mixture was stirred for 5 min and then warmed to $-50^{\circ} \mathrm{C}$ and stirred for 1 h . Aqueous $\mathrm{NH}_{4} \mathrm{OAc}\left(25 \%\right.$ w/v; $\left.5 \mathrm{~cm}^{3}\right)$ was added to the mixture at $-50^{\circ} \mathrm{C}$ to quench the reaction after which it was extracted with ether $\left(20 \mathrm{~cm}^{3} \times 4\right)$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated. Flash chromatography of the residue afforded the protected $\mathrm{LXA}_{4} 30(33 \mathrm{mg})$ and its ($8 E$)-isomer 31 ($49 \mathrm{mg}, 76 \%$ total yield) Physical data for protected LXA $_{4}$ 30: $[\alpha]_{\mathrm{D}}{ }^{2}-7.8\left(c 0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left\{\right.$ lit: ${ }^{13 b}[\alpha]_{\mathrm{D}}-9.8$ (c $\left.\left.0.38, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\} ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1805,1733,1428,1175$, $1111,998,822,772,741$ and $703 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) 0.89(3$ $\mathrm{H}, \mathrm{t}, J 6.5,20-\mathrm{H}), 1.08\left(9 \mathrm{H}, \mathrm{t}, \mathrm{Bu}^{\mathrm{t}}\right), 1.23-1.60(15 \mathrm{H}, \mathrm{m}, 3,4,16-$
\dagger The value of the optical rotation is small and somewhat different from the reported value probably owing to experimental error. The values recorded for the products in subsequent steps were, however, coincident with those in literature.
$19-\mathrm{H}+\mathrm{OEt}), 2.19(2 \mathrm{H}, \mathrm{t}, J 6.8,2-\mathrm{H}), 4.09(3 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OEt})$, $4.28\left(1 \mathrm{H}, \mathrm{q}, J_{4.5}=J_{6.5} 6.1,5-\mathrm{H}\right), 4.69\left(1 \mathrm{H}, \mathrm{td}, J_{14.15} 3.2\right.$, $\left.J_{16.15} 8.6,15-\mathrm{H}\right), 5.15\left(1 \mathrm{H}, \mathrm{t}, J_{13.14}=J_{15.14} 7.8,14-\mathrm{H}\right), 5.64(1$ $\left.\mathrm{H}, \mathrm{dd}, J_{14.13} 8.1, J_{12.13} 16.7,13-\mathrm{H}\right)$, 5.67 (1 H, dd, $J_{5.6} 6.7, J_{7.6}$ $15.4,6-\mathrm{H}), 5.90-5.97$ ($2 \mathrm{H}, \mathrm{ABMN}, J_{\text {A.B }} 10.9,8,9-\mathrm{H}$), 6.20 (1 H , dd, $\left.J_{12.11} 10.8, J_{10.11} 14.7,11-\mathrm{H}\right), 6.32\left(1 \mathrm{H}, \mathrm{dd}, J_{8.7} 10.2, J_{6.7}\right.$ $15,7-\mathrm{H}), 6.38$ ($\left.1 \mathrm{H}, \mathrm{dd}, J_{11.12} 10.7, J_{13.12} 15.1,12-\mathrm{H}\right), 6.50(1 \mathrm{H}$, $\left.\mathrm{dd}, J_{9.10} 10.5, J_{11.10} 14.7,10-\mathrm{H}\right), 7.33-7.42(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.63-7.67 (4 H, m, ArH); $m / z\left(\mathrm{CI}, \mathrm{CH}_{4}\right) 645$ ($\mathrm{M}+1,17 \%$), 601 ($\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}, 15$), 583 (51), 383 (100), 327 (98), 305 (27), 281 (28), 199 (23), 179 (10), 99 (9) and 79 (9); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 294$, 306 and 320. Physical data for ($8 E$)-isomer 31; $[\alpha]_{\mathrm{D}}-88.4$ (c $\left.0.39, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right),\left\{\right.$ lit., $\left.{ }^{13 b}[\alpha]_{\mathrm{D}}-81\left(c 0.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) 0.89(3 \mathrm{H}, \mathrm{t}, J 6,20-\mathrm{H}), 1.07\left(9 \mathrm{H}, \mathrm{t}, \mathrm{Bu}^{t}\right), 1.21-1.68$ ($15 \mathrm{H}, \mathrm{m}, 3,4,16-19-\mathrm{H}+\mathrm{OEt}), 2.16(2 \mathrm{H}, \mathrm{t}, J 7.2,2-\mathrm{H}), 4.08$ (2 $\mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OEt}), 4.21\left(1 \mathrm{H}, \mathrm{q}, J_{4.5}=J_{6.5} 5.3,5-\mathrm{H}\right), 4.67(1 \mathrm{H}$, td, $\left.J_{14.15} 3.2, J_{16.15} 8.6,15-\mathrm{H}\right), 5.12\left(1 \mathrm{H}, \mathrm{t}, J_{13.14}=J_{15.14} 7.8\right.$, $14-\mathrm{H}), 5.62\left(1 \mathrm{H}, \mathrm{dd}, J_{14.13} 8.2, J_{12.13} 15.1,13-\mathrm{H}\right), 5.67(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{5.6} 6.6, J_{7.6} 15.1,6-\mathrm{H}\right), 5.92\left(1 \mathrm{H}, \mathrm{dd}, J_{8.7} 10.7, J_{6.7} 15.2,7-\mathrm{H}\right.$), $6.07\left(1 \mathrm{H}, \mathrm{dd}, J_{10.9} 10.8, J_{8.9} 14.9,9-\mathrm{H}\right), 6.18\left(1 \mathrm{H}, \mathrm{dd}, J_{7.8} 10.6\right.$, $\left.J_{9.8} 15.4,8-\mathrm{H}\right), 6.21\left(1 \mathrm{H}, \mathrm{dd}, J_{12.11} 10.6, J_{10.11} 15.4,11-\mathrm{H}\right)$, $6.31\left(1 \mathrm{H}, \mathrm{dd}, J_{9.10} 10.8, J_{11.10} 14.9,10-\mathrm{H}\right), 6.40\left(1 \mathrm{H}, \mathrm{dd}, J_{11.12}\right.$ $\left.10.7, J_{13.12} 15.1,12-\mathrm{H}\right), 7.26-7.42(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.61-7.66$ $(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \lambda_{\text {max }}(\mathrm{EtOH}) 294,306$ and 320 nm .

Protected LXB $_{4} 32$ and its (11E)-isomer 33

BuLi ($2.5 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ in hexane; $0.065 \mathrm{~cm}^{3}, 0.150 \mathrm{mmol}$) was added to a solution of the phosphonium salt $29(107 \mathrm{mg}, 0.150$ mmol) in dry THF ($10 \mathrm{~cm}^{3}$) at $-100^{\circ} \mathrm{C}$ followed after 5 min , by a solution of the aldehyde $21(40 \mathrm{mg}, 0.140 \mathrm{mmol})$ in THF ($2 \mathrm{~cm}^{3}$) and HMPA ($0.1 \mathrm{~cm}^{3}$). After being stirred for 1 h at $-40{ }^{\circ} \mathrm{C}$, the reaction mixture was treated with aqueous $\mathrm{NH}_{4} \mathrm{OAc}\left(25 \% \mathrm{w} / \mathrm{v}, 3 \mathrm{~cm}^{3}\right)$ to quench the reaction and then extracted with ether $\left(20 \mathrm{~cm}^{3} \times 3\right)$. The combined extracts were washed with brine, dried and concentrated. Flash chromatography of the residue on silica gel afforded the protected LXB_{4} $32(35 \mathrm{mg})$ and its ($11 E$)-isomer 33 ($20 \mathrm{mg}, 61 \%$ total yield); Physical data for protected LXB_{4} 32: $[\alpha]_{\mathrm{D}}-3.5\left(c 0.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $\left\{\right.$ lit, $\left.{ }^{13 b}[\alpha]_{\mathrm{D}}-4.7\left(c \quad 0.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\} ; v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1807$, 1732, 1471, 1428, 1390, 1180, 1111, 998, 822, 741 and 703; $\delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) 0.83(3 \mathrm{H}, \mathrm{t}, J 7.3,20-\mathrm{H}), 1.07(9 \mathrm{H}, \mathrm{t}$, $\left.\mathrm{Bu}^{t}\right)$, 1.14-1.90 ($\left.15 \mathrm{H}, \mathrm{m}, 3,4,16-19-\mathrm{H}, \mathrm{OEt}\right), 2.34(2 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H}), 4.13(2 \mathrm{H}, \mathrm{q}, J 6.6, \mathrm{OEt}), 4.23(1 \mathrm{H}, \mathrm{m}, 15-\mathrm{H}), 4.70(1 \mathrm{H}, \mathrm{m}$, $5-\mathrm{H}), 5.17(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 5.63\left(1 \mathrm{H}, \mathrm{dd}, J_{6.7} 8.2, J_{8.7} 15.3,7-\mathrm{H}\right)$, 5.69 ($1 \mathrm{H}, \mathrm{dd}, J_{15.14} 6.2, J_{13.14} 14.8,14-\mathrm{H}$), 5.94 ($2 \mathrm{H}, \mathrm{AB}, J_{\text {A.B }}$ $11,11,12-\mathrm{H}), 6.18\left(1 \mathrm{H}, \mathrm{dd}, J_{8.9} 11, J_{10.9} 15,9-\mathrm{H}\right), 6.25-6.41$ (2 $\mathrm{H}, \mathrm{m}, 8,13-\mathrm{H}), 6.51$ ($1 \mathrm{H}, \mathrm{dd}, J_{11.10} 11, J_{9.10} 15,10-\mathrm{H}$), 7.34 $7.40(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.67-7.72(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z\left(\mathrm{CI}, \mathrm{CH}_{4}\right)$ $645(\mathrm{M}+1,14 \%), 583(25), 567$ (9), 523 (9), 389 (26), 339 (100), 327 (82), 299 (20), 281 (28), 239 (25) 199 (46), 179 (38) and 79 (22); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 294,306$ and 320 nm ; Physical data for its (11E)-isomer 33; $[\alpha]_{\mathrm{D}}-91.8\left(c 0.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\left\{\right.$ lit., ${ }^{13 b}[\alpha]_{\mathrm{D}}-114$ (c $\left.\left.0.51, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)\right\} ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) 0.76(3 \mathrm{H}, \mathrm{t}, J 7.2,20-$ H), $1.01\left(9 \mathrm{H}, \mathrm{t}, \mathrm{Bu}^{\mathrm{t}}\right), 1.05-1.90(15 \mathrm{H}, \mathrm{m}, 3,4,16-19-\mathrm{H}, \mathrm{OEt})$, $2.37(2 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 4.08(2 \mathrm{H}, \mathrm{q}, J 7.1, \mathrm{OEt}), 4.13(1 \mathrm{H}, \mathrm{q}$, $\left.J_{14.15}=J_{16.15} 6,15-\mathrm{H}\right), 4.63(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 5.10\left(1 \mathrm{H}, \mathrm{t}, J_{7.6}=\right.$ $\left.J_{5.6} 7.9,6-H\right), 5.55\left(1 \mathrm{H}, \mathrm{dd}, J_{6.7} 8.1, J_{8.7} 15,7-\mathrm{H}\right), 5.65(1 \mathrm{H}$, dd, $\left.J_{15.14} 6.8, J_{13.14} 15.2,14-\mathrm{H}\right), 5.88\left(1 \mathrm{H}\right.$, dd, $J_{10.11} 10.7$, $\left.J_{12.11} 15.1,11-\mathrm{H}\right), 6.15(2 \mathrm{H}, \mathrm{m}, 9,12-\mathrm{H}), 6.27\left(1 \mathrm{H}, \mathrm{dd}, J_{11.10}\right.$ $\left.11, J_{9.10} 14.8,10-\mathrm{H}\right), 6.35\left(1 \mathrm{H}, \mathrm{dd}, J_{9.8} 10.8, J_{7.8} 15.1,8-\mathrm{H}\right)$, 7.29-7.32 ($6 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.57-7.62 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\lambda_{\text {max }}(\mathrm{EtOH}) / \mathrm{nm} 294,306$ and 322.

($\mathbf{9 R , 1 0 S , 1 1 S , 1 2 R}$)-Bis(tert-butyldiphenylsilyloxy)icosa-6,14-

 diyne-10,11-diol 37$\mathrm{TiCl}_{4}\left(0.58 \mathrm{~cm}^{3}, 5.27 \mathrm{mmol}\right)$ was added to a stirred solution of $\mathrm{Ph}_{3} \mathrm{As}(1.61 \mathrm{~g}, 5.27 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$, to give a purple solution which was immediately added to a solution of the acetonide $36(4.50 \mathrm{~g}, 5.27 \mathrm{mmol})$ and propane-1,3-dithiol ($2.34 \mathrm{~cm}^{3}, 23.3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(90 \mathrm{~cm}^{3}\right)$ also at
$-78^{\circ} \mathrm{C}$. The mixture was stirred for 1 h at $-78^{\circ} \mathrm{C}$ and then allowed to warm to room temperature. Stirring was continued for 2 h after which the mixture was treated with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The organic phases were separated and the aqueous phase was back-extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer and extracts were washed successively with aqueous NaHCO_{3}, water and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Chromatography of the residue gave the title compound 37 as a colourless oil ($3.69 \mathrm{~g}, 86 \%$); $[\alpha]_{\mathrm{D}}-52.2$ (c $0.9, \mathrm{CHCl}_{3}$) (Found: 76.2; H 8.7. $\mathrm{C}_{52} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{2}$ requires C , $76.60 ; \mathrm{H}, 8.65 \%) ; v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3450,1410,1100,710$ and 700 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.87(6 \mathrm{H}, \mathrm{t}, J 7.0), 1.10\left(18 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right)$, $1.24-1.44(12 \mathrm{H}, \mathrm{m}), 2.04(4 \mathrm{H}, \mathrm{t}, J 6.8), 2.27(4 \mathrm{H}, \mathrm{m}), 3.95(2 \mathrm{H}$, $\mathrm{m}), 4.20(2 \mathrm{H}, \mathrm{d}, J 6.3)$ and $7.35-7.80(20 \mathrm{H}, \mathrm{m}) ; m / z(\mathrm{FAB}) 815$ $\left(\mathrm{M}^{+}+1\right)$ and $559\left(\mathrm{M}^{+}-\mathrm{OSiPh}_{2} \mathrm{Bu}^{t}\right)$.

(2R)-2-(tert-Butyldiphenylsilyloxy)dec-4-ynal 38

Lead tetraacetate ($2.40 \mathrm{~g}, 5.38 \mathrm{mmol}$) was added to a solution of the diol $37(3.50 \mathrm{~g}, 4.3 \mathrm{mmol})$ in dry benzene ($30 \mathrm{~cm}^{3}$) under nitrogen and the mixture stirred for 2 h at room temp. It was then filtered through a short column of silica gel and evaporated under reduced pressure to afford the crude aldehyde. Flash chromatography of this afforded the title compound 38 as a colourless oil $(2.58 \mathrm{~g}, 74 \%) ;[\alpha]_{\mathrm{D}}-21.9$ (c $3.5, \mathrm{CHCl}_{3}$), $\left\{\right.$ lit., ${ }^{20}[\alpha]_{\mathrm{D}}-24.7$ (c 0.03, $\left.\left.\mathrm{CHCl}_{3}\right)\right\} ; v_{\text {max }}{ }^{-}$ (film) $/ \mathrm{cm}^{-1} 2100 \mathrm{w}, 1740$ and $1105 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.88$ $(3 \mathrm{H}, \mathrm{t}, J 7.1), 1.08\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.22-1.46(6 \mathrm{H}, \mathrm{m}), 2.10(2$ $\mathrm{H}, \mathrm{m}), 2.48(2 \mathrm{H}, \mathrm{dd}, J 2.0$ and 5.8$), 4.08(1 \mathrm{H}, \mathrm{dt}, J 1.2$ and $5.8)$, $7.34-7.44(6 \mathrm{H}, \mathrm{m}), 7.65-7.71(4 \mathrm{H}, \mathrm{m})$ and $9.63(1 \mathrm{H}, \mathrm{d}$, J 1.2).

(6 R, 2E,4E)-(tert-Butyldiphenylsilyloxy)tetradeca-2,4-dien-8ynal 39

Method A. To a solution of the aldehyde 38 ($1.64 \mathrm{~g}, 4.04$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(35 \mathrm{~cm}^{3}\right)$ and THF ($15 \mathrm{~cm}^{3}$) under nitrogen were added successively formylmethylene(triphenyl)arsonium bromide ($4.50 \mathrm{~g}, 10.1 \mathrm{mmol}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(1.40 \mathrm{~g}, 10.1 \mathrm{mmol})$ and water $\left(0.15 \mathrm{~cm}^{3}\right)$. After being stirred at room temp. for 24 h , the reaction mixture was filtered through a short silica gel column. The filtrate was concentrated and chromatographed directly to yield the title compound $39(0.94 \mathrm{~g}, 51 \%)$, the formylolefination product ($0.26 \mathrm{~g}, 15 \%$) and the triple addition product $(0.43 \mathrm{~g}, 22 \%)$; physical and spectroscopic data of the title compound 39: $[\alpha]_{\mathrm{D}}+30.3\left(c\right.$ 1.1, $\left.\mathrm{CHCl}_{3}\right)$ (Found: 76.2; H 8.7. $\mathrm{C}_{52} \mathrm{H}_{70} \mathrm{O}_{6} \mathrm{Si}_{2}$ requires $\mathrm{C}, 76.60 ; \mathrm{H}, 8.65 \%$); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ $2700,1690,1585,1100$ and $970 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}$, $\mathrm{t}, J 7.1), 1.09\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.27-1.44(6 \mathrm{H}, \mathrm{m}, 11,12,13-\mathrm{H}), 2.08$ ($2 \mathrm{H}, \mathrm{m}, 10-\mathrm{H}$), $2.38(2 \mathrm{H}, \mathrm{m}, 7-\mathrm{H}), 4.40(1 \mathrm{H}, \mathrm{m}, 6-\mathrm{H}), 6.04(1 \mathrm{H}$, dd, $J .9$ and $15.3,2-\mathrm{H}), 6.30\left(2 \mathrm{H}, \mathrm{m}, J_{4.5} 15.3,4,5-\mathrm{H}\right), 7.02(1$ $\mathrm{H}, \mathrm{dd}, J 10.1$ and $15.3,3-\mathrm{H}), 7.38(6 \mathrm{H}, \mathrm{m}, \mathrm{PhH}), 7.66(4 \mathrm{H}, \mathrm{m}$, $\mathrm{PhH})$ and $9.54(1 \mathrm{H}, \mathrm{d}, J 7.9,1-\mathrm{H}) ; m / z 459\left(\mathrm{M}^{+}+1\right), 458$ $\left(\mathrm{M}^{+}\right), 401\left(\mathrm{M}^{+}-\mathrm{Bu}^{\mathrm{t}}\right), 349,199(100 \%)$ and 135. Physical and spectroscopic data of the formyl-olefination product ($2 E, 4 R$)-4-(tert-butyldiphenylsilyloxy)dodec-2-en-6-ynal: $[\alpha]_{\mathrm{D}}-26.4$ (c $\left.3.2, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 2700,1695,1640,1585$ and 970 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.86(3 \mathrm{H}, \mathrm{t}, J 7.1), 1.09\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.21-$ $1.45(6 \mathrm{H}, \mathrm{m}), 2.07(2 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 2.37(2 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 4.52(1 \mathrm{H}$, $\mathrm{m}, 4-\mathrm{H}), 6.31(1 \mathrm{H}, \mathrm{dd}, J 7.8$ and $15.5,2-\mathrm{H}), 6.85(1 \mathrm{H}, \mathrm{dd}, J 4.7$ and $15.5,3-\mathrm{H}), 7.34-7.47(6 \mathrm{H}, \mathrm{m}, \mathrm{PhH}), 7.60-7.70(4 \mathrm{H}, \mathrm{m}$, $\mathrm{PhH})$ and $9.51(1 \mathrm{H}, \mathrm{d}, J 7.8,1-\mathrm{H}) ; m / z 433\left(\mathrm{M}^{+}+1\right), 443$ $\left(\mathrm{M}^{+}\right), 376\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}+1\right), 324,199$ and $135(100 \%)$. Physical and spectroscopic data of the triple addition product ($2 E, 4 E, 6 E$, $8 R$)-8-(tert-butyldiphenylsilyloxy)hexadeca-2,4,6-trien-10-ynal: $[\alpha]_{\mathrm{D}}-4.8$ (c 3.1, CHCl_{3}); $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3050,2700,1700$, 1640, 1590, 1100 and $990 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}, \mathrm{t}, J$ 7.1), 1.06 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}$), $1.26-1.44$ ($6 \mathrm{H}, \mathrm{m}, 13,14,15-\mathrm{H}$), 2.08 (2 $\mathrm{H}, \mathrm{m}, 12-\mathrm{H}), 2.35(2 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 4.36(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 6.09(3 \mathrm{H}$, $\left.\mathrm{m}, J_{2.3} 15.2, J_{6.7} 15.4,2,6,7-\mathrm{H}\right), 6.45(1 \mathrm{H}, \mathrm{dd}, J 11.1$ and $14.8,4-$ H), $6.59(1 \mathrm{H}, \mathrm{dd}, J 10.4$ and $14.8,5-\mathrm{H}), 7.09(1 \mathrm{H}, \mathrm{dd}, J 11.1$ and $15.2,3-\mathrm{H}), 7.38(6 \mathrm{H}, \mathrm{m}, \mathrm{PhH}), 7.68(4 \mathrm{H}, \mathrm{m}, \mathrm{PhH})$ and 9.56
(1 H, d, J 7.9, 1-H); m/z $484\left(\mathrm{M}^{+}\right), 427\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right), 375,199$ (100%), 135.
Method B. To a solution of the aldehyde $38(3.59 \mathrm{~g}, 8.83$ $\mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}\left(108 \mathrm{~cm}^{3}\right)$ and THF ($12 \mathrm{~cm}^{3}$) under nitrogen were added, successively, 3-formylallyl(triphenyl)arsonium bromide ($5.99 \mathrm{~g}, 13.1 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(1.81 \mathrm{~g}, 13.1 \mathrm{mmol})$ and water $\left(0.185 \mathrm{~cm}^{3}\right)$. After being stirred at room temperature for 24 h , the reaction mixture was filtered through a short silica gel column and the filtrate was concentrated and chromatographed directly to afford the title compound 39 as a ($2 E, 4 E$)- and ($2 E, 4 Z$)-isomeric mixture ($2.61 \mathrm{~g}, 64 \% ; 85 \%$ based on recovered starting material) and recovered starting aldehyde $38(0.87 \mathrm{~g})$. The ratio between the $(2 E, 4 E)$ - and ($2 E, 4 Z$)-isomer was determined as $c a$. $9: 1$. Isomerization of the mixture was induced with I_{2} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and in the presence of sunlight, to give the pure ($2 E, 4 E$)-product (2.52 g) after flash chromatography.

(2E,4E,6R)-(tert-Butyldiphenylsilyloxy)tetradeca-2,4-dien-8-yn-

 1-ol 40Sodium borohydride ($73 \mathrm{mg}, 1.92 \mathrm{mmol}$) was added to a cold $\left(0^{\circ} \mathrm{C}\right)$ mixture of the aldehyde $39(0.88 \mathrm{~g}, 1.92 \mathrm{mmol})$ and $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.71 \mathrm{~g}, 1.92 \mathrm{mmol})$ in $\mathrm{Pr}^{\mathrm{i} O H}\left(10 \mathrm{~cm}^{3}\right)$ and the resulting reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 6 h . It was then neutralized with $10 \% \mathrm{HOAc}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The combined extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated. Flash chromatography of the residue gave the alcohol 40 as a colourless oil $(0.787 \mathrm{~g}, 89 \%) ;[\alpha]_{\mathrm{D}}+22.1(c 0.24$, $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3300,1590,1450,1110$ and $940 ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) 0.88 ($3 \mathrm{H}, \mathrm{t}, J 6.8$), 1.07 ($9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{t}$), 1.27-1.52 (6 $\mathrm{H}, \mathrm{m}), 2.08(2 \mathrm{H}, \mathrm{m}), 2.33(2 \mathrm{H}, \mathrm{m}), 4.12(2 \mathrm{H}, \mathrm{d}, J 5.9), 4.29(1$ $\mathrm{H}, \mathrm{m}), 5.68-5.80(2 \mathrm{H}, \mathrm{m}), 5.97-6.21\left(2 \mathrm{H}, 2 \mathrm{dd}, J_{3.4} 10.4, J_{2.3}\right.$ and $\left.J_{4.5} 15.0\right), 7.34-7.42(6 \mathrm{H}, \mathrm{m}, \mathrm{PhH})$ and $7.63-7.71(4 \mathrm{H}, \mathrm{m}$, $\mathrm{PhH}) ; m / z 460\left(\mathrm{M}^{+}\right), 403\left(\mathrm{M}^{+}-\mathrm{Bu}^{t}\right), 349,199(100 \%), 197$, 135 and 77.
(2E,4E,6R)-6-(tert-Butyldiphenylsilyloxy)-tetradeca-2,4-dien-8ynyl(triphenyl)phosphonium bromide 42
The alcohol $40(0.75 \mathrm{~g}, 1.63 \mathrm{mmol})$ was added to a solution of $\mathrm{CBr}_{4}(1.47 \mathrm{~g}, 4.41 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{P}(1.47 \mathrm{~g}, 5.59 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3}\right)$ at $0{ }^{\circ} \mathrm{C}$ and the mixture was stirred for 5 min . It was then evaporated under reduced pressure at room temperature and the resulting solid residue was repeatedly washed with dry diethyl ether. The combined filtrates were evaporated to yield the labile bromide $41(0.728 \mathrm{~g})$ as an oil, which was used without further purification.
Triphenylphosphine ($0.692 \mathrm{~g}, 2.66 \mathrm{mmol}$) was added to a solution of the crude bromide 41 in $\mathrm{MeCN}\left(12 \mathrm{~cm}^{3}\right)$ and the mixture was stirred at room temperature for 4 h and then concentrated under reduced pressure. After addition of ether $\left(3 \times 10 \mathrm{~cm}^{3}\right)$ to the residue the mixture was centrifuged and the supernatant was discarded. The resulting phosphonium salt was washed twice with ether and dried in vacuo to afford the title salt 42 as a pale yellow syrup ($0.90 \mathrm{~g}, 70 \%$); $\delta_{\mathrm{H}}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) 0.85(3 \mathrm{H}, \mathrm{t}, J 7.1), 1.04(9 \mathrm{H}, \mathrm{s}), 1.23-1.39(6 \mathrm{H}, \mathrm{m})$, $2.02(2 \mathrm{H}, \mathrm{m}), 2.29(2 \mathrm{H}, \mathrm{m}), 4.56(1 \mathrm{H}, \mathrm{m}), 4.89(2 \mathrm{H}, \mathrm{m}), 5.30$ $(1 \mathrm{H}, \mathrm{m}), 5.69-5.77(2 \mathrm{H}, \mathrm{m}), 6.22(1 \mathrm{H}, \mathrm{m})$ and $7.25-7.87(25 \mathrm{H}$, $3 \mathrm{~m}, \mathrm{PhH}$).

($5 S, 12 R, 6 Z, 8 E, 10 E$)-Methyl 5-(benzoyloxy)-12-(tert-butyl-diphenylsilyloxy)icosa-6,8,10-trien-14-ynoate 43

To a stirred solution of the phosphorane generated from the phosphonium salt $42(0.90 \mathrm{~g}, 1.15 \mathrm{mmol})$ with BuLi $(2.5 \mathrm{~mol}$ dm^{-3} in hexane; $0.46 \mathrm{~cm}^{3}, 1.15 \mathrm{mmol}$) in dry THF ($10 \mathrm{~cm}^{3}$) containing HMPA $\left(1.5 \mathrm{~cm}^{3}\right)$ at $-100^{\circ} \mathrm{C}$ was added a solution of the C-1-C-6 segment ${ }^{27}(457 \mathrm{mg}, 1.73 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$. The resulting mixture was stirred at $-100^{\circ} \mathrm{C}$ for 1 h , allowed to warm to room temperature and then stirred for 0.5 h . After this the reaction mixture was poured into a mixture of 25% aqueous
ammonium acetate ($150 \mathrm{~cm}^{3}$), ether ($150 \mathrm{~cm}^{3}$) and triethylamine $\left(9 \mathrm{~cm}^{3}\right)$. The aqueous phase was separated and extracted with ether, and the combined organic layer and extracts were then washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated under reduced pressure. The crude product was chromatographed on a silica gel column (washed with 5% triethylamine in light petroleum) with ethyl acetate-light petroleum ($1: 80$) as the eluent to give the desired title compound $43(0.538 \mathrm{~g}, 68 \%)$ and the corresponding ($6 E$)-isomer ($0.128 \mathrm{~g}, 16 \%$). For compound 43: $[\alpha]_{\mathrm{D}}+235.7$ (c $\left.0.03, \mathrm{Me}_{2} \mathrm{CO}\right) ; v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 1740,1720$, $1430,1270,1110,940$ and $710 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.86(3 \mathrm{H}, \mathrm{t}$, J7.1), $1.10-1.40(15 \mathrm{H}, \mathrm{m}), 1.58(4 \mathrm{H}, \mathrm{m}), 2.06(4 \mathrm{H}, \mathrm{m}), 2.50(2$ $\mathrm{H}, \mathrm{m}), 3.31(3 \mathrm{H}, \mathrm{s}), 4.45(1 \mathrm{H}, \mathrm{m}), 5.34(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and 10.2$)$, $5.86(1 \mathrm{H}, \mathrm{dd}, J 7.3$ and 14.2), $5.97(1 \mathrm{H}, \mathrm{m}), 6.01(1 \mathrm{H}, \mathrm{m}), 6.06$ $(1 \mathrm{H}, \mathrm{m}), 6.10(1 \mathrm{H}, \mathrm{m}), 6.69(1 \mathrm{H}, \mathrm{dd}, J 12.3$ and 12.7$), 7.28,7.80$ $(10 \mathrm{H}, \mathrm{m}, \mathrm{SiPh})$ and $7.05,8.16(5 \mathrm{H}, 2 \mathrm{~m}, \mathrm{COPh}) ; m / z(\mathrm{FAB})$ $671\left(\mathrm{M}^{+}+1\right), 460,135(100), 104$. For the $(6 E)$-isomer: $v_{\max }($ film $) / \mathrm{cm}^{-1} 1740,1720,1430,1270,1110,940$ and 710 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) 0.86(3 \mathrm{H}, \mathrm{t}, J 7.1), 1.10-1.40(15 \mathrm{H}, \mathrm{m})$, $1.59(4 \mathrm{H}, \mathrm{m}), 2.07(4 \mathrm{H}, \mathrm{m}), 2.48(2 \mathrm{H}, \mathrm{m}), 3.33(3 \mathrm{H}, \mathrm{s}), 4.48(1$ $\mathrm{H}, \mathrm{m}), 5.52(1 \mathrm{H}, \mathrm{dd}, J 7.1$ and 14.1), $5.63(1 \mathrm{H}, \mathrm{m}), 5.85(1$ $\mathrm{H}, \mathrm{dd}, J 6.5$ and 14.9), 5.97-6.00 $(2 \mathrm{H}, \mathrm{m}), 6.14(1 \mathrm{H}, \mathrm{m}), 6.29$ $(1 \mathrm{H}, \mathrm{m}), 7.22,7.81(10 \mathrm{H}, \mathrm{m}, \mathrm{SiPh})$ and $7.08,8.18(5 \mathrm{H}, 2 \mathrm{~m}$, $\mathrm{COPh}) ; m / z(\mathrm{FAB}) 691\left(\mathrm{M}^{+}+1\right), 460,197,134$ and 105 (100%).

(5S,12R,6Z,8E,10E,14Z)-Methyl 5-benzoyloxy-12-(tert-butyldiphenylsilyloxy) icosa-6,8,10,14-tetraenoate 44

A suspension of compound $\mathbf{4 3}(40 \mathrm{mg}, 0.058 \mathrm{mmol})$, Lindlar catalyst (Aldrich; 58 mg) and quinoline ($0.1 \mathrm{~cm}^{3}$) in ethyl acetate ($10 \mathrm{~cm}^{3}$) was magnetically stirred under a hydrogen atmosphere. The reaction was constantly monitored and after the starting material had been consumed ($c a .2$ h) the suspension was filtered and then evaporated. The residue was flash chromatographed (the silica gel column was pre-treated as mentioned above) to provide the title compound 44 (31.4 mg , 78%); HPLC (using a silica gel column; mobile phase, ethyl acetate-light petroleum 1:25 with UV detection at 270 nm) of the sample showed it to be $>95 \%$ purity, the retention time of compound 44 under these conditions was $14 \mathrm{~min} ; v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 1740,1719,1426,1270,1111,997$ and $709 ; \delta_{\mathrm{H}}(600$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.87(3 \mathrm{H}, \mathrm{t}, J 7.2), 1.07-1.29(15 \mathrm{H}, \mathrm{m}), 1.74(4$ $\mathrm{H}, \mathrm{m}), 1.84(2 \mathrm{H}, \mathrm{m}), 2.16(2 \mathrm{H}, \mathrm{m}), 2.37(2 \mathrm{H}, \mathrm{m}), 3.65(3 \mathrm{H}, \mathrm{s})$, $4.21(1 \mathrm{H}, \mathrm{m}), 5.27(1 \mathrm{H}, \mathrm{m}), 5.37(1 \mathrm{H}, \mathrm{m}), 5.42(1 \mathrm{H}, \mathrm{dd}, J 9.8$ and 10.2), 5.70 ($1 \mathrm{H}, \mathrm{dd}, J 6.8$ and 15.2), 5.91 (1 H , dd, $J 10.2$ and 11.6), $5.99(1 \mathrm{H}, \mathrm{dd}, J 10.8$ and 15.2), $6.15(2 \mathrm{H}, \mathrm{m}), 6.49$ ($1 \mathrm{H}, \mathrm{dd}, J 11.6$ and 14.4), $7.36-77.43(9 \mathrm{H}, \mathrm{m}), 7.66(2 \mathrm{H}, \mathrm{m})$ and $8.05(1 \mathrm{H}, \mathrm{m})$.

(5S,12R,6Z,8E,10E,14Z)-Methyl 5,12-dihydroxyicosa-6,8,10,-14-tetraenoate (LTB_{4} methyl ester) 45

$\mathrm{Bu}_{4} \mathrm{NF}\left(1 \mathrm{~mol} \mathrm{dm}^{-3}\right.$ solution in THF; $0.127 \mathrm{~cm}^{3}, 0.127 \mathrm{mmol}$) was added to a magnetically stirred solution of compound 44 ($18 \mathrm{mg}, 0.026 \mathrm{mmol}$) in dry THF $\left(3 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$ under nitrogen. The reaction mixture was stirred overnight at room temperature and then treated with brine $\left(3 \mathrm{~cm}^{3}\right)$ to quench the reaction. The mixture was extracted with ether and the extract dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under reduced pressure. The resulting residue was dissolved in $\mathrm{MeOH}\left(4 \mathrm{~cm}^{3}\right)$ and treated with solid $\mathrm{K}_{2} \mathrm{CO}_{3}(47 \mathrm{mg}, 0.33 \mathrm{mmol})$. After being stirred overnight at room temperature the reaction mixture was poured into a vigorously stirred mixture of ether $\left(50 \mathrm{~cm}^{3}\right)$ and aqueous buffer ($\mathrm{pH} 6,50 \mathrm{~cm}^{3}$). The organic phase was separated, washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was chromatographed to provide LTB_{4} methyl ester ($6.3 \mathrm{mg}, 69 \%$); $[\alpha]_{\mathrm{D}}^{20}+4.9\left(c 0.15, \mathrm{CCl}_{4}\right)\left\{\right.$ lit., $\left.{ }^{28}[\alpha]_{\mathrm{D}}^{20}+4.6\left(c 0.39, \mathrm{CCl}_{4}\right)\right\} ;$ $v_{\text {max }}$ (film) $/ \mathrm{cm}^{-1} 3446,1736,1595,1462,1376,1260,1162$ and $1070 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) 6.48\left(1 \mathrm{H}, \mathrm{dd}, J_{8.9} 14.5, J_{8.7} 11.0,8-\right.$ H), $6.31\left(1 \mathrm{H}, \mathrm{dd}, J_{10.9} 10.9, J_{10.11} 14.9,10-\mathrm{H}\right), 6.22(1 \mathrm{H}, \mathrm{dd}$, $\left.J_{9.10} 10.9, J_{9.8} 14.5,9-\mathrm{H}\right), 6.08\left(1 \mathrm{H}, \mathrm{t}, J_{7.8}=J_{7.6} 6.2,7-\mathrm{H}\right)$,
5.76 (1 H , ddd, $\left.J_{11.12} 6.4, J_{11.10} 14.9,11-\mathrm{H}\right), 5.56(1 \mathrm{H}, \mathrm{m}$, $15-\mathrm{H}), 5.43\left(1 \mathrm{H}, \mathrm{dd}, J_{6.5} 9.7, J_{6.7} 6.2,6-\mathrm{H}\right), 5.37(1 \mathrm{H}, \mathrm{m}, 14-$ $\mathrm{H}), 4.59\left(1 \mathrm{H}, \mathrm{dt}, J_{5.6} 9.7, J_{5.4} 6.6,5-\mathrm{H}\right), 4.12(1 \mathrm{H}, \mathrm{dt}$, $\left.J_{12.13}=J_{12.11} 6.4,12-\mathrm{H}\right), 3.67(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}), 2.33(4 \mathrm{H}, \mathrm{m})$, $2.03(2 \mathrm{H}, \mathrm{m}), 1.72-1.60(5 \mathrm{H}, \mathrm{m}), 1.36-1.21(7 \mathrm{H}, \mathrm{m})$ and 0.88 ($3 \mathrm{H}, \mathrm{t}, J 6.9$).

Acknowledgements

We are grateful to the Chinese Academy of Sciences, National Natural Science Foundation of China and State Committee of Science and Technology of China for financial support.

References

1 M. J. Berenguer, R. M. Castells and M. Moreno-Manas Galard, Tetrahedron Lett., 1971, 495.
2 J.-H. Yang, L.-L. Shi, W.-J. Xiao, X.-Q. Wen and Y.-Z. Huang, Heteroatom Chem., 1990, 1, 75.
3 R. H. Wollenberg, Tetrahedron Lett., 1978, 717.
4 (a) N. Kann, T. Rein, B. Akermark and P. Helquist, Acta. Chem. Scand., Ser. B, 1988, 42, 569; (b) N. Kann, T. Rein, B. Akermark and P. Helquist, J. Org. Chem., 1990, 55, 5312.
5 B. Contreras, L. Duhamel and G. Plè, Synth. Commun., 1990, 20, 2983.

6 H. Maeta and K. Suzuki, Tetrahedron Lett., 1993, 34, 341.
7 M. Bellassoued and M. Salemkour, Tetrahedron Lett., 1993, 34, 5281.

8 Y.-Z. Huang, L.-L. Shi and J.-H. Yang, Tetrahedron Lett., 1985, 26, 6447.

9 (a) J. Rokach, R. N. Young and M. Kakushima, Tetrahedron Lett., 1981, 22, 979; (b) J. Rokach, R. Zambone, Cheuk-Kun Lau and Y. Guindon, Tetrahedron. Lett., 1981, 22, 2759; (c) S. R. Baber, J. R. Boot and S. E. Morgan, Tetrahedron Lett., 1983, 24, 4469.

10 (a) C. N. Serhan, M. Hamberg and B. Samuelsson, Biochem. Biophys. Res. Commun., 1984, 118, 943; (b) C. N. Serhan, M. Hamberg and B. Samuelsson, Proc. Natl. Acad. Sci USA, 1984, 81, 5335.
11 (a) C. N. Serhan, K. C. Nicolaou, S. E. Webber, C. A. Veale, S.-E. Dahlèn, T. J. Puustinen and B. Samuelsson, J. Biol. Chem., 1986, 261, 16340; (b) C. N. Serhan, M. Hamberg, B. Samuelsson, J. Morris and D. G. Wishka, Proc. Natl. Acad. Sci. USA, 1986, 83, 1983.
12 (a) K. C. Nicolaou, J. K. Ramphal, N. A. Petasis and C. N. Serhan, Angew. Chem., Int. Ed. Engl., 1991, 30, 1100; (b) D. Clissold and C. Thickitt, Nat. Prod. Rep., 1994, 11, 621.

13 (a) 'Leukotrienes and Lipoxygenases: Chemical, Biological and Clinical Aspects', in Bioactive Molecules, Vol. 11, ed. by J. Rokach, Elsevier, N. Y., 1989, pp. 110-135 and references cited therein; (b) C. Gravier-Pelletier, J. Dumas, Y. Le Merrer and J. C. Depezay, Tetrahedron, 1992, 48, 2441.
14 E. Baer, Biochem. Prep., 1952, 2, 231; D. Y. Jackson, Synth. Commun., 1988, 337.
15 Y.-F. Wang, J.-C. Li and Y.-L. Wu, Acta Chim. Sinica, 1993, 51, 409.

16 C. Gravier-Pelletier, J. Dumas, Y. Le Merrer and J. C. Depezay, J. Carbohydr. Chem., 1992, 11, 969.

17 W.-L. Wu and Y.-L. Wu, J. Org. Chem., 1993, 58, 3586.
18 (a) B. J. Fitzsimmons and J. Rokach, Tetrahedron Lett., 1984, 25, 3043; (b) Y. Leblame, B. J. Fitzsimmons, J. Adams and J. Rokach, Tetrahedon Lett., 1985, 26, 1399.
19 B. Samuelsson, Science 1983, 220, 568.
20 (a) A. L. Willis, CRC Handbook of Eicosanoids, Vol. 1, Part A; CRC Press, Boca Raton, Florida, 1987, p. 175; (b) F. A. J. Kerdesky, S. P. Schmidt and D. W. Brooks, J. Org. Chem., 1993, 58, 3516 and references cited therein.
21 Y.-F. Wang, J.-C. Li, Y.-L. Wu, W.-J. Xiao, L.-L. Shi and Y.-Z. Huang, Chin. Chem. Lett., 1994, 5, 459.

22 Y. L. Merrer, C. Gravier-Pelletier, D. Micas-Languin, F. Mestre, A. Dureault and J.-C. Depezay, J. Org. Chem., 1989, 54, 2409.

23 Y. Lablanc, B. J. Fitzsimmons, R. Zamboni and J. Rokach, J. Org. Chem., 1988, 53, 265.
24 (a) T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2nd edn, Wiley, New York, 1991; (b) J. Rokach, R. N. Young, M. Kakushima, C.-K. Lau, R. Seguin, R. Frenette and Y. Guindon, Tetrahedron Lett., 1981, 22, 979; (c) A. Oku, M. Kinugasa and T. Kamada, Chem. Lett., 1993, 1, 165; (d) F. Bellesia, M. Boni, F. Ghelfi and U. M. Pagnoni, Tetrahedron,

1993, 49, 199; (e) Y.-L. Li, X.-L. Sun and Y.-L. Wu, Tetrahedron, 1994, 50, 10727; (f) M. A. Andrews and G. L. Could, Carbohydr. Res., 1992, 229, 141.
25 I. Suzuki and Y. Yamamoto, J. Org. Chem., 1993, 58, 4783.
26 W.-L. Wu, J. Li and Y.-L. Wu, Chin. J. Chem., 1994, 12, 562.
27 S. Okamoto, T. Shimazaki, Y. Kitano, Y. Kobayashi and F. Sato, J. Chem. Soc., Chem. Commun., 1986, 1352.

28 M. Avignon-Tropis, M. Treilhou, J. R. Pougny, I. Fréchard-Ortuno and G. Linstrumelle, Tetrahedron, 1991, 47, 7279.

29 Y. L. Merrer, A. Dureault, C. Greck, D. Micas-Languin, C. Gravier and J.-C. Depezay, Heterocycles, 1987, 25, 541.

Paper 5/03780H
Received 12th June 1995 Accepted 6th October 1995

